Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Biotechnol ; 384: 12-19, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38373531

ABSTRACT

Nitriles have a wide range of uses as building blocks, solvents, and alternative fuels, but also as intermediates and components of flavors and fragrances. The enzymatic synthesis of nitriles by aldoxime dehydratase (Oxd) is an emerging process with significant advantages over conventional approaches. Here we focus on the immobilization of His-tagged Oxds on metal affinity resins, an approach that has not been used previously for these enzymes. The potential of the immobilized Oxd was demonstrated for the synthesis of phenylacetonitrile (PAN) and E-cinnamonitrile, compounds applicable in the fragrance industry. A comparison of Talon and Ni-NTA resins showed that Ni-NTA with its higher binding capacity was more suitable for the immobilization of Oxd. Immobilized Oxds were prepared from purified enzymes (OxdFv from Fusarium vanettenii and OxdBr1 from Bradyrhizobium sp.) or the corresponding cell-free extracts. The immobilization of cell-free extracts reduced time and cost of the catalyst production. The immobilized OxdBr1 was superior in terms of recyclability (22 cycles) in the synthesis of PAN from 15 mM E/Z-phenylacetaldoxime at pH 7.0 and 30 °C (100% conversion, 61% isolated yield after product purification). The volumetric and catalyst productivity was 10.5 g/L/h and 48.3 g/g of immobilized protein, respectively.


Subject(s)
Hydro-Lyases , Odorants , Hydro-Lyases/metabolism , Nitriles/metabolism , Oximes/chemistry , Oximes/metabolism , Enzymes, Immobilized
2.
J Biotechnol ; 382: 44-50, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38266924

ABSTRACT

Mycobacterium marinum CAR (MmCAR) is one of the most widely used CARs as the key enzyme for the synthesis of aldehydes, alcohols and further products from the respective carboxylic acids. Herein, we describe the first functionally secreted 131 kDa CAR and its isolated A-domain using Komagataella phaffii and a methanol-free constitutive expression strategy. Precipitated and lyophilized MmCAR (500 µg) was isolated from the culture supernatant and showed no decrease in activity for piperonylic acid (80% conversion), even when stored for up to 3 weeks at 4°C. Lyophilized MmCAR precipitate gave 48% yield of E/Z-nonanal-4-nitrobenzoyloxime from the reduction of nonanoic acid and in-situ derivatization with O-4-nitrobenzoyl-hydroxylamine. Furthermore, K. phaffii could successfully secrete the MmCAR adenylation domain. Its activity was confirmed by the amidation of benzoic acid with n-hexylamine. Neither enzyme variant was glycosylated by the yeast. In summary, functional CAR can be secreted by K. phaffii and used for cell free conversion of carboxylic acids to various products.


Subject(s)
Carboxylic Acids , Oxidoreductases , Carboxylic Acids/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Alcohols
3.
Biomolecules ; 13(5)2023 04 22.
Article in English | MEDLINE | ID: mdl-37238587

ABSTRACT

Lignins are the most abundant biopolymers that consist of aromatic units. Lignins are obtained by fractionation of lignocellulose in the form of "technical lignins". The depolymerization (conversion) of lignin and the treatment of depolymerized lignin are challenging processes due to the complexity and resistance of lignins. Progress toward mild work-up of lignins has been discussed in numerous reviews. The next step in the valorization of lignin is the conversion of lignin-based monomers, which are limited in number, into a wider range of bulk and fine chemicals. These reactions may need chemicals, catalysts, solvents, or energy from fossil resources. This is counterintuitive to green, sustainable chemistry. Therefore, in this review, we focus on biocatalyzed reactions of lignin monomers, e.g., vanillin, vanillic acid, syringaldehyde, guaiacols, (iso)eugenol, ferulic acid, p-coumaric acid, and alkylphenols. For each monomer, its production from lignin or lignocellulose is summarized, and, mainly, its biotransformations that provide useful chemicals are discussed. The technological maturity of these processes is characterized based on, e.g., scale, volumetric productivities, or isolated yields. The biocatalyzed reactions are compared with their chemically catalyzed counterparts if the latter are available.


Subject(s)
Lignin , Phenols , Lignin/chemistry , Phenols/chemistry , Solvents/chemistry , Catalysis
4.
Adv Synth Catal ; 365(1): 37-42, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-37082351

ABSTRACT

Various widely applied compounds contain cyano-groups, and this functional group serves as a chemical handle for a whole range of different reactions. We report a cyanide free chemoenzymatic cascade for nitrile synthesis. The reaction pathway starts with a reduction of carboxylic acid to aldehyde by carboxylate reductase enzymes (CARs) applied as living cell biocatalysts. The second - chemical - step includes in situ oxime formation with hydroxylamine. The final direct step from oxime to nitrile is catalyzed by aldoxime dehydratases (Oxds). With compatible combinations of a CAR and an Oxd, applied in one-pot two-step reactions, several aliphatic and aryl-aliphatic target nitriles were obtained in more than 80% conversion. Phenylacetonitrile, for example, was prepared in 78% isolated yield. This chemoenzymatic route does not require cyanide salts, toxic metals, or undesired oxidants in contrast to entirely chemical procedures.

5.
Enzyme Microb Technol ; 164: 110187, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36610228

ABSTRACT

The aim of this work was to map the sequence space of aldoxime dehydratases (Oxds) as enzymes with great potential for nitrile synthesis. Microbes contain an abundance of putative Oxds but fewer than ten Oxds were characterized in total and only two in fungi. In this work, we prepared and characterized a new Oxd (protein gb|EEU37245.1 named OxdFv) from Fusarium vanettenii 77-13-4. OxdFv is distant from the characterized Oxds with a maximum of 36% identity. Moreover, the canonical Oxd catalytic triad RSH is replaced by R141-E187-E303 in OxdFv. R141A and E187A mutants did not show significant activities, but mutant E303A showed a comparable activity as the wild-type enzyme. According to native mass spectrometry, OxdFv contained almost 1 mol of heme per 1 mol of protein, and was composed of approximately 88% monomer (41.8 kDa) and 12% dimer. A major advantage of this enzyme is its considerable activity under aerobic conditions (25.0 ± 4.3 U/mg for E,Z-phenylacetaldoxime at pH 9.0 and 55 °C). Addition of sodium dithionite (reducing agent) and Fe2+ was required for this activity. OxdFv favored (aryl)aliphatic aldoximes over aromatic aldoximes. Substrate docking in the homology model of OxdFv showed a similar substrate specificity. We conclude that OxdFv is the first characterized Oxd of the REE type.


Subject(s)
Fusarium , Fusarium/genetics , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Catalysis , Oximes/metabolism
6.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35408822

ABSTRACT

Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.


Subject(s)
Laccase , Monophenol Monooxygenase , Chemistry Techniques, Synthetic , Laccase/metabolism , Monophenol Monooxygenase/metabolism , Oxidation-Reduction , Phenols/chemistry
7.
Microorganisms ; 10(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35336124

ABSTRACT

In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.

8.
Catal Sci Technol ; 12(1): 62-66, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35126993

ABSTRACT

We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation. The final step to the nitrile is catalyzed by aldoxime dehydratase (Oxd). Full conversions of phenylacetic acid and hexanoic acid were achieved in a two-phase mode.

9.
Molecules ; 25(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854275

ABSTRACT

Fungi contain many plant-nitrilase (NLase) homologues according to database searches. In this study, enzymes NitTv1 from Trametes versicolor and NitAb from Agaricus bisporus were purified and characterized as the representatives of this type of fungal NLase. Both enzymes were slightly more similar to NIT4 type than to NIT1/NIT2/NIT3 type of plant NLases in terms of their amino acid sequences. Expression of the synthetic genes in Escherichia coli Origami B (DE3) was induced with 0.02 mM isopropyl ß-D-1-thiogalactopyranoside at 20 °C. Purification of NitTv1 and NitAb by cobalt affinity chromatography gave ca. 6.6 mg and 9.6 mg of protein per 100 mL of culture medium, respectively. Their activities were determined with 25 mM of nitriles in 50 mM Tris/HCl buffer, pH 8.0, at 30 °C. NitTv1 and NitAb transformed ß-cyano-L-alanine (ß-CA) with the highest specific activities (ca. 132 and 40 U mg-1, respectively) similar to plant NLase NIT4. ß-CA was transformed into Asn and Asp as in NIT4 but at lower Asn:Asp ratios. The fungal NLases also exhibited significant activities for (aryl)aliphatic nitriles such as 3-phenylpropionitrile, cinnamonitrile and fumaronitrile (substrates of NLase NIT1). NitTv1 was more stable than NitAb (at pH 5-9 vs. pH 5-7). These NLases may participate in plant-fungus interactions by detoxifying plant nitriles and/or producing plant hormones. Their homology models elucidated the molecular interactions with various nitriles in their active sites.


Subject(s)
Agaricus , Aminohydrolases , Fungal Proteins , Phylogeny , Agaricus/enzymology , Agaricus/genetics , Aminohydrolases/genetics , Aminohydrolases/metabolism , Asparagine/genetics , Asparagine/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Polyporaceae/enzymology , Polyporaceae/genetics
10.
Int J Mol Sci ; 20(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795104

ABSTRACT

Nitrilases participate in the nitrile metabolism in microbes and plants. They are widely used to produce carboxylic acids from nitriles. Nitrilases were described in bacteria, Ascomycota and plants. However, they remain unexplored in Basidiomycota. Yet more than 200 putative nitrilases are found in this division via GenBank. The majority of them occur in the subdivision Agaricomycotina. In this work, we analyzed their sequences and classified them into phylogenetic clades. Members of clade 1 (61 proteins) and 2 (25 proteins) are similar to plant nitrilases and nitrilases from Ascomycota, respectively, with sequence identities of around 50%. The searches also identified five putative cyanide hydratases (CynHs). Representatives of clade 1 and 2 (NitTv1 from Trametes versicolor and NitAg from Armillaria gallica, respectively) and a putative CynH (NitSh from Stereum hirsutum) were overproduced in Escherichia coli. The substrates of NitTv1 were fumaronitrile, 3-phenylpropionitrile, ß-cyano-l-alanine and 4-cyanopyridine, and those of NitSh were hydrogen cyanide (HCN), 2-cyanopyridine, fumaronitrile and benzonitrile. NitAg only exhibited activities for HCN and fumaronitrile. The substrate specificities of these nitrilases were largely in accordance with substrate docking in their homology models. The phylogenetic distribution of each type of nitrilase was determined for the first time.


Subject(s)
Aminohydrolases/genetics , Basidiomycota/genetics , Fungal Proteins/genetics , Aminohydrolases/chemistry , Aminohydrolases/metabolism , Basidiomycota/classification , Basidiomycota/enzymology , Binding Sites , Fumarates/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrogen Cyanide/metabolism , Molecular Docking Simulation , Phylogeny , Protein Binding , Pyridines/metabolism , Substrate Specificity
11.
Int J Biol Macromol ; 115: 746-753, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29698761

ABSTRACT

Almost 100 genes within the genus Bradyrhizobium are known to potentially encode aldoxime dehydratases (Oxds), but none of the corresponding proteins have been characterized yet. Aldoximes are natural substances involved in plant defense and auxin synthesis, and Oxds are components of enzymatic cascades enabling bacteria to transform, utilize and detoxify them. The aim of this work was to characterize a representative of the highly conserved Oxds in Bradyrhizobium spp. which include both plant symbionts and members of the soil communities. The selected oxd gene from Bradyrhizobium sp. LTSPM299 was expressed in Escherichia coli, and the corresponding gene product (OxdBr1; GenBank: WP_044589203) was obtained as an N-His6-tagged protein (monomer, 40.7 kDa) with 30-47% identity to Oxds characterized previously. OxdBr1 was most stable at pH ca. 7.0-8.0 and at up to 30 °C. As substrates, the enzyme acted on (aryl)aliphatic aldoximes such as E/Z-phenylacetaldoxime, E/Z-2-phenylpropionaldoxime, E/Z-3-phenylpropionaldoxime, E/Z-indole-3-acetaldoxime, E/Z-propionaldoxime, E/Z-butyraldoxime, E/Z-valeraldoxime and E/Z-isovaleraldoxime. Some of the reaction products of OxdBr1 are substrates of nitrilases occurring in the same genus. Regions upstream of the oxd gene contained genes encoding a putative aliphatic nitrilase and its transcriptional activator, indicating the participation of OxdBr1 in the metabolic route from aldoximes to carboxylic acids.


Subject(s)
Bradyrhizobium/enzymology , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Amino Acid Sequence , Bradyrhizobium/genetics , Escherichia coli/genetics , Gene Expression , Hydro-Lyases/biosynthesis , Hydro-Lyases/chemistry , Nitriles/metabolism , Oximes/metabolism , Sequence Analysis
12.
Appl Microbiol Biotechnol ; 102(9): 3893-3900, 2018 May.
Article in English | MEDLINE | ID: mdl-29525852

ABSTRACT

The aim of this study is to summarize the current progress in the design of biocatalytic processes applicable for the production of optically pure mandelic acids and their analogues. These compounds are used as building blocks for pharmaceutical chemistry and as chiral resolving agents. Their enzymatic syntheses mainly employed nitrile hydrolysis with nitrilases, ester hydrolysis, ammonolysis or esterification with lipases or esterases, and ketone reduction or alcohol oxidation with dehydrogenases. Each of these methods will be characterized in terms of its product concentrations, enantioselectivities, and the types of catalysts used. This review will focus on the dynamic kinetic resolution of mandelonitrile and analogues by nitrilases resulting in the production of high concentrations of (R)-mandelic acid or (R)-2-chloromandelic acid with excellent e.e. Currently, there is no comparable process for (S)-mandelic acids. However, the coupling of the S-selective cyanation of benzaldehyde with the enantioretentive hydrolysis of (S)-mandelonitrile thus obtained is a promising strategy. The major product can be changed from (S)-acid to (S)-amide using nitrilase mutants. The competitiveness of the biocatalytic and chemical processes will be assessed. This review covers the literature published within 2003-2017.


Subject(s)
Industrial Microbiology , Mandelic Acids/metabolism , Aminohydrolases/genetics , Aminohydrolases/metabolism , Biocatalysis , Industrial Microbiology/trends , Kinetics , Stereoisomerism
13.
World J Microbiol Biotechnol ; 33(1): 8, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27858339

ABSTRACT

The aim of this study is to review the current state of and highlight the challenges in the production of microbial nitrilases as catalysts for the mild hydrolysis of industrially important nitriles. Together with aldoxime dehydratase, the nitrile-hydrolyzing enzymes (nitrilase, nitrile hydratase) are key enzymes in the aldoxime-nitrile pathway which is widely distributed in bacteria and fungi. The availability of nitrilases has grown significantly over the past decade due to the use of metagenomic and database-mining approaches. Databases contain plenty of putative enzymes of this type, whose overproduction may improve the spectrum and the industrial utility of nitrilases. By exploiting this resource, the number of experimentally verified nitrilases has recently increased to several hundred. We especially focus on the efficient heterologous expression systems that are applicable for the overproduction of wild-type nitrilases and their artificial variants. Biocatalyst forms with industrial potential are also highlighted. The potential industrial applications of nitrilases are classified according to their target products (α-hydroxy acids, α- and ß-amino acids, cyano acids, amides). The emerging uses of nitrilases and their subtypes (cyanide hydratases, cyanide dihydratases) in bioremediation is also summarized. The integration of nitrilases with other enzymes into artificial multienzymatic and chemoenzymatic pathways is considered a promising strategy for future applications.


Subject(s)
Aminohydrolases/metabolism , Bacteria/enzymology , Fungi/enzymology , Nitriles/metabolism , Protein Engineering/methods , Aminohydrolases/genetics , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Biodegradation, Environmental , Databases, Protein , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/genetics , Metagenomics , Recombinant Proteins/metabolism
14.
Water Res ; 102: 90-95, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27328365

ABSTRACT

The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution.


Subject(s)
Phenol/metabolism , Wastewater , Coke , Cyanides/metabolism , Monophenol Monooxygenase , Phenols/metabolism
15.
J Agric Food Chem ; 64(14): 2925-31, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26961852

ABSTRACT

Tyrosinases act in the development of organoleptic properties of tea, raisins, etc., but also cause unwanted browning of fruits, vegetables, and mushrooms. The tyrosinase from Agaricus bisporus has been used as a model to study tyrosinase inhibitors, which are also indispensable in the treatment of skin pigmentation disorders. However, this model has disadvantages such as side enzyme activities and the presence of multiple isoenzymes. Therefore, we aimed to introduce a new tyrosinase model. The pro-tyrosinase from Polyporus arcularius was overproduced in Escherichia coli. Trypsin digestion led to a cleavage after R388 and hence enzyme activation. The tyrosinase was a homodimer and transformed L-DOPA and tert-butylcatechol preferentially. Various aurons were examined as effectors of this enzyme. 2'- and 3'-hydroxyaurones acted as its activators and 2',4'-dihydroxyaurone as an inhibitor, whereas 4'-hydroxyaurones were its substrates. The enzyme is a promising model for tyrosinase effector studies, being a single isoenzyme and void of side enzyme activities.


Subject(s)
Benzofurans/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Polyporus/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/genetics , Gene Expression , Kinetics , Monophenol Monooxygenase/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Appl Microbiol Biotechnol ; 100(5): 2193-202, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26521240

ABSTRACT

The aim of this study was to discover new nitrilases with useful activities, especially towards dinitriles that are precursors of high-value cyano acids. Genes coding for putative nitrilases of different origins (fungal, plant, or bacterial) with moderate similarities to known nitrilases were selected by mining the GenBank database, synthesized artificially and expressed in Escherichia coli. The enzymes were purified, examined for their substrate specificities, and classified into subtypes (aromatic nitrilase, arylacetonitrilase, aliphatic nitrilase, cyanide hydratase) which were largely in accordance with those predicted from bioinformatic analysis. The catalytic potential of the nitrilases for dinitriles was examined with cyanophenyl acetonitriles, phenylenediacetonitriles, and fumaronitrile. The nitrilase activities and selectivities for dinitriles and the reaction products (cyano acid, cyano amide, diacid) depended on the enzyme subtype. At a preparative scale, all the examined dinitriles were hydrolyzed into cyano acids and fumaronitrile was converted to cyano amide using E. coli cells producing arylacetonitrilases and an aromatic nitrilase, respectively.


Subject(s)
Aminohydrolases/metabolism , Nitriles/metabolism , Aminohydrolases/genetics , Cloning, Molecular , Computational Biology , Data Mining , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
17.
Appl Microbiol Biotechnol ; 99(21): 8875-82, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26329848

ABSTRACT

The purpose of this study is to summarize the current knowledge of the enzymes which are involved in the hydrolysis of cyanide, i.e., cyanide hydratases (CHTs; EC 4.2.1.66) and cyanide dihydratases (CynD; EC 3.5.5.1). CHTs are probably exclusively produced by filamentous fungi and widely occur in these organisms; in contrast, CynDs were only found in a few bacterial genera. CHTs differ from CynDs in their reaction products (formamide vs. formic acid and ammonia, respectively). Several CHTs were also found to transform nitriles but with lower relative activities compared to HCN. Mutants of CynDs and CHTs were constructed to study the structure-activity relationships in these enzymes or to improve their catalytic properties. The effect of the C-terminal part of the protein on the enzyme activity was determined by constructing the corresponding deletion mutants. CynDs are less active at alkaline pH than CHTs. To improve its bioremediation potential, CynD from Bacillus pumilus was engineered by directed evolution combined with site-directed mutagenesis, and its operation at pH 10 was thus enabled. Some of the enzymes have been tested for their potential to eliminate cyanide from cyanide-containing wastewaters. CynDs were also used to construct cyanide biosensors.


Subject(s)
Biosensing Techniques , Cyanides/analysis , Cyanides/metabolism , Hydro-Lyases/metabolism , Hydrolases/metabolism , Bacteria/enzymology , Biotransformation , DNA Mutational Analysis , Environmental Pollutants/analysis , Environmental Pollutants/metabolism , Enzyme Stability , Fungi/enzymology , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Hydrogen-Ion Concentration , Hydrolases/chemistry , Hydrolases/genetics , Hydrolysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Engineering , Structure-Activity Relationship
18.
Org Biomol Chem ; 13(28): 7803-12, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26107443

ABSTRACT

Paclitaxel (taxol) is an antimicrotubule agent widely used in the treatment of cancer. Taxol is prepared in a semisynthetic route by coupling the N-benzoyl-(2R,3S)-3-phenylisoserine sidechain to the baccatin III core structure. Precursors of the taxol sidechain have previously been prepared in chemoenzymatic approaches using acylases, lipases, and reductases, mostly featuring the enantioselective, enzymatic step early in the reaction pathway. Here, nitrile hydrolysing enzymes, namely nitrile hydratases and nitrilases, are investigated for the enzymatic hydrolysis of two different sidechain precursors. Both sidechain precursors, an openchain α-hydroxy-ß-amino nitrile and a cyanodihydrooxazole, are suitable for coupling to baccatin III directly after the enzymatic step. An extensive set of nitrilases and nitrile hydratases was screened towards their activity and selectivity in the hydrolysis of two taxol sidechain precursors and their epimers. A number of nitrilases and nitrile hydratases converted both sidechain precursors and their epimers.


Subject(s)
Aminohydrolases/metabolism , Hydro-Lyases/metabolism , Nitriles/metabolism , Paclitaxel/biosynthesis , Aminohydrolases/chemistry , Hydro-Lyases/chemistry , Hydrolysis , Molecular Conformation , Nitriles/chemistry , Paclitaxel/chemistry
19.
Mol Biotechnol ; 57(5): 466-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25652193

ABSTRACT

The application of arylacetonitrilases from filamentous fungi to the hydrolysis of high concentrations of (R,S)-mandelonitrile (100-500 mM) was demonstrated for the first time. Escherichia coli strains expressing the corresponding genes were used as whole-cell catalysts. Nitrilases from Aspergillus niger, Neurospora crassa, Nectria haematococca, and Arthroderma benhamiae (enzymes NitAn, NitNc, NitNh, and NitAb, respectively) exhibited different degrees of enantio- and chemoselectivity (amide formation). Their enantio- and chemoselectivity was increased by increasing pH (from 8 to 9-10) and adding 4-10% (v/v) toluene as the cosolvent. NitAn and NitNc were able to convert an up to 500 mM substrate in batch mode. NitAn formed a very low amount of the by-product, amide (<1% of the total product). This enzyme produced up to >70 g/L of (R)-mandelic acid (e.e. 94.5-95.6%) in batch or fed-batch mode. Its volumetric productivities were the highest in batch mode [571 ± 32 g/(L d)] and its catalyst productivities in fed-batch mode (39.9 ± 2.5 g/g of dcw). NitAb hydrolyzed both enantiomers of 100 mM (R,S)-mandelonitrile at pH 5.0 and is therefore promising for the enantioretentive transformation of (S)-mandelonitrile. Sequence analysis suggested that fungal arylacetonitrilases with similar properties (enantioselectivity, chemoselectivity) were clustered together.


Subject(s)
Aminohydrolases/chemistry , Aminohydrolases/metabolism , Mandelic Acids/metabolism , Aminohydrolases/genetics , Arthrodermataceae/enzymology , Aspergillus niger/enzymology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Nectria/enzymology , Neurospora crassa/enzymology , Phylogeny , Species Specificity
20.
Antonie Van Leeuwenhoek ; 105(6): 1179-90, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24781748

ABSTRACT

Bacterial amidases and nitrile hydratases can be used for the synthesis of various intermediates and products in the chemical and pharmaceutical industries and for the bioremediation of toxic pollutants. The aim of this study was to analyze the expression of the amidase and nitrile hydratase genes of Rhodococcus erythropolis and test the stereospecific nitrile hydratase and amidase activities on chiral cyanohydrins. The nucleotide sequences of the gene clusters containing the oxd (aldoxime dehydratase), ami (amidase), nha1, nha2 (subunits of the nitrile hydratase), nhr1, nhr2, nhr3 and nhr4 (putative regulatory proteins) genes of two R. erythropolis strains, A4 and CCM2595, were determined. All genes of both of the clusters are transcribed in the same direction. RT-PCR analysis, primer extension and promoter fusions with the gfp reporter gene showed that the ami, nha1 and nha2 genes of R. erythropolis A4 form an operon transcribed from the Pami promoter and an internal Pnha promoter. The activity of Pami was found to be weakly induced when the cells grew in the presence of acetonitrile, whereas the Pnha promoter was moderately induced by both the acetonitrile or acetamide used instead of the inorganic nitrogen source. However, R. erythropolis A4 cells showed no increase in amidase and nitrile hydratase activities in the presence of acetamide or acetonitrile in the medium. R. erythropolis A4 nitrile hydratase and amidase were found to be effective at hydrolysing cyanohydrins and 2-hydroxyamides, respectively.


Subject(s)
Amidohydrolases/metabolism , Gene Expression Regulation, Bacterial , Hydro-Lyases/metabolism , Hydroxylamines/metabolism , Nitriles/metabolism , Rhodococcus/enzymology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Expression Profiling , Multigene Family , Rhodococcus/genetics , Sequence Analysis, DNA , Substrate Specificity , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...