Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 159(4): 437-451, 2020 04.
Article in English | MEDLINE | ID: mdl-31990675

ABSTRACT

Human spermatogonial stem cells (SSCs) are an essential source to maintain spermatogenesis as an efficient process for daily sperm production with high self-renewal capacity along adulthood. However, the phenotype and the subpopulation that represent the real reserve SSC for the human testis remain unknown. Moreover, although SSC markers have been described for undifferentiated spermatogonia (Adark and Apale), the existence of a specific subtype that could be identified as the actual/true SSC has not yet been fully determined. Herein we evaluated spermatogonial morphology, kinetics, positioning regarding blood vasculature in relation to protein expression (UTF1, GFRA1, and KIT) as well as proliferative activity (MCM7) and identified a small subpopulation of Adark with nuclear rarefaction zone (AdVac) that behaves as the human reserve SSC. We show that AdVac is the smallest human spermatogonial population (10%), staying quiescent (89%) and positioned close to blood vessels throughout most of the stages of the seminiferous epithelium cycle (SEC) and divides only at stages I and II. Within this AdVac population, we found a smaller pool (2% of A undifferentiated spermatogonia) of entirely quiescent cells exhibiting a high expression of UTF1 and lacking GFRA1. This finding suggests them as the real human reserve SSC (AdVac UTF1+/GFRA1-/MCM7-). Additionally, Adark without nuclear vacuole (AdNoVac) and Apale have similar kinetic and high proliferative capacity throughout the SEC (47%), indicating that they are actively dividing undifferentiated spermatogonia. Identification of human stem cells with evident reserve SSC functionality may help further studies intending to sort SSCs to treat male diseases and infertility.


Subject(s)
Adult Germline Stem Cells , Spermatogonia/physiology , Testis/cytology , Adult , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Humans , Male , Middle Aged , Mitosis , Nuclear Proteins/metabolism , Spermatogonia/cytology , Testis/blood supply , Trans-Activators/metabolism
2.
Hum Reprod ; 32(6): 1170-1182, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28369509

ABSTRACT

STUDY QUESTION: Can all types of testicular germ cells be accurately identified by microscopy techniques and unambiguously distributed in stages of the human seminiferous epithelium cycle (SEC)? SUMMARY ANSWER: By using a high-resolution light microscopy (HRLM) method, which enables an improved visualization of germ cell morphological features, we identified all testicular germ cells in the seminiferous epithelium and precisely grouped them in six well-delimitated SEC stages, thus providing a reliable reference source for staging in man. WHAT IS ALREADY KNOWN: Morphological characterization of germ cells in human has been done decades ago with the use of conventional histological methods (formaldehyde-based fixative -Zenker-formal- and paraffin embedding). These early studies proposed a classification of the SEC in six stages. However, the use of stages as baseline for morphofunctional evaluations of testicular parenchyma has been difficult because of incomplete morphological identification of germ cells and their random distribution in the human SEC. STUDY DESIGN, SIZE, DURATION: Testicular tissue from adult and elderly donors with normal spermatogenesis according to Levin's, Johnsen's and Bergmann's scores were used to evaluate germ cell morphology and validate their distribution and frequency in stages throughout human spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testicular tissue from patients diagnosed with congenital bilateral agenesis of vas deferens (n = 3 adults) or prostate cancer (n = 3 elderly) were fixed in glutaraldehyde and embedded in araldite epoxy resin. Morphological analyses were performed by both light and transmission electron microscopy. MAIN RESULTS AND THE ROLE OF CHANCE: HRLM method enabled a reliable morphological identification of all germ cells (spermatogonia, spermatocytes and spermatids) based on high-resolution aspects of euchromatin, heterochromatin and nucleolus. Moreover, acrosomal development of spermatids was clearly revealed. Altogether, our data redefined the limits of each stage leading to a more reliable determination of the SEC in man. LIMITATIONS, REASONS FOR CAUTION: Occasionally, germ cells can be absent in some tubular sections. In this situation, it has to be taken into account the germ cell association proposed in the present study to classify the stages. WIDER IMPLICATIONS OF THE FINDINGS: Our findings bring a new focus on the morphology and development of germ cells during the SEC in human. Application of HRLM may be a valuable tool for research studies and clinical andrology helping to understand some testicular diseases and infertility conditions which remain unsolved. STUDY FUNDING/COMPETING INTEREST: Experiments were partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors declare that there are no conflicts of interest. TRIAL REGISTRATION NUMBER: Not applicable.


Subject(s)
Aging , Models, Biological , Seminiferous Epithelium/ultrastructure , Spermatogenesis , Spermatozoa/ultrastructure , Adult , Aged , Aged, 80 and over , Biopsy , Gonadal Dysgenesis/pathology , Humans , Image Processing, Computer-Assisted , Male , Microscopy , Microscopy, Electron, Transmission , Orchiectomy , Parenchymal Tissue/cytology , Parenchymal Tissue/growth & development , Parenchymal Tissue/pathology , Parenchymal Tissue/ultrastructure , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Seminiferous Epithelium/cytology , Seminiferous Epithelium/growth & development , Seminiferous Epithelium/pathology , Spermatozoa/cytology , Spermatozoa/growth & development , Spermatozoa/pathology , Testis/abnormalities , Vas Deferens/abnormalities
SELECTION OF CITATIONS
SEARCH DETAIL
...