Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38559085

ABSTRACT

Genome organization is intricately tied to regulating genes and associated cell fate decisions. In this study, we examine the positioning and functional significance of human genes, grouped by their evolutionary age, within the 3D organization of the genome. We reveal that genes of different evolutionary origin have distinct positioning relationships with both domains and loop anchors, and remarkably consistent relationships with boundaries across cell types. While the functional associations of each group of genes are primarily cell type-specific, such associations of conserved genes maintain greater stability across 3D genomic features and disease than recently evolved genes. Furthermore, the expression of these genes across various tissues follows an evolutionary progression, such that RNA levels increase from young genes to ancient genes. Thus, the distinct relationships of gene evolutionary age, function, and positioning within 3D genomic features contribute to tissue-specific gene regulation in development and disease.

2.
Cell Mol Bioeng ; 15(5): 493-504, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36444344

ABSTRACT

Introduction: Life on Earth depends on oxygen; human tissues require oxygen signaling, whereas many microorganisms, including bacteria, thrive in anoxic environments. Despite these differences, human tissues and bacteria coexist in close proximity to each other such as in the intestine. How oxygen governs intestinal-bacterial interactions remains poorly understood. Methods: To address to this gap, we created a dual-oxygen environment in a microfluidic device to study the role of oxygen in regulating the regulation of intestinal enzymes and proteins by gut bacteria. Two-layer microfluidic devices were designed using a fluid transport model and fabricated using soft lithography. An oxygen-sensitive material was integrated to determine the oxygen levels. The intestinal cells were cultured in the upper chamber of the device. The cells were differentiated, upon which bacterial strains, a facultative anaerobe, Escherichia coli Nissle 1917, and an obligate anaerobe, Bifidobacterium Adolescentis, were cultured with the intestinal cells. Results: The microfluidic device successfully established a dual-oxygen environment. Of particular importance in our findings was that both strains significantly upregulated mucin proteins and modulated several intestinal transporters and transcription factors but only under the anoxic-oxic oxygen gradient, thus providing evidence of the role of oxygen on bacterial-epithelial signaling. Conclusions: Our work that integrates cell and molecular biology with bioengineering presents a novel strategy to engineer an accessible experimental system to provide tailored oxygenated environments. The work could provide new avenues to study intestine-microbiome signaling and intestinal tissue engineering, as well as a novel perspective on the indirect effects of gut bacteria on tissues including tumors. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00735-x.

SELECTION OF CITATIONS
SEARCH DETAIL