Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab Rep ; 38: 101053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469086

ABSTRACT

GAMT deficiency is a rare autosomal recessive disease within the group of cerebral creatine deficiency syndromes. Cerebral creatine depletion and accumulation of guanidinoacetate (GAA) lead to clinical presentation with intellectual disability, seizures, speech disturbances and movement disorders. Treatment consists of daily creatine supplementation to increase cerebral creatine, reduction of arginine intake and supplementation of ornithine for reduction of toxic GAA levels. This study represents the first long-term follow-up over a period of 14 years, with detailed clinical data, biochemical and multimodal neuroimaging findings. Developmental milestones, brain MRI, quantitative single voxel 1H magnetic resonance spectroscopy (MRS) and biochemical analyses were assessed. The results reveal insights into the dose dependent effects of creatine/ornithine supplementation and expand the phenotypic spectrum of GAMT deficiency. Of note, the creatine concentrations, which were regularly monitored over a long follow-up period, increased significantly over time, but did not reach age matched control ranges. Our patient is the second reported to show normal neurocognitive outcome after an initial delay, stressing the importance of early diagnosis and treatment initiation.

3.
Genet Med ; 25(11): 100938, 2023 11.
Article in English | MEDLINE | ID: mdl-37454282

ABSTRACT

PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.


Subject(s)
RNA, Transfer , Zebrafish , Animals , Humans , Mutation , Zebrafish/genetics , Mechanistic Target of Rapamycin Complex 1 , Ligases , Phenotype
4.
Genet Med ; 25(1): 125-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36350326

ABSTRACT

PURPOSE: For patients with inherited metabolic disorders (IMDs), any diagnostic delay should be avoided because early initiation of personalized treatment could prevent irreversible health damage. To improve diagnostic interpretation of genetic data, gene function tests can be valuable assets. For IMDs, variant-transcending functional tests are readily available through (un)targeted metabolomics assays. To support the application of metabolomics for this purpose, we developed a gene-based guide to select functional tests to either confirm or exclude an IMD diagnosis. METHODS: Using information from a diagnostic IMD exome panel, Kyoto Encyclopedia of Genes and Genomes, and Inborn Errors of Metabolism Knowledgebase, we compiled a guide for metabolomics-based gene function tests. From our practical experience with this guide, we retrospectively selected illustrative cases for whom combined metabolomic/genomic testing improved diagnostic success and evaluated the effect hereof on clinical management. RESULTS: The guide contains 2047 metabolism-associated genes for which a validated or putative variant-transcending gene function test is available. We present 16 patients for whom metabolomic testing either confirmed or ruled out the presence of a second pathogenic variant, validated or ruled out pathogenicity of variants of uncertain significance, or identified a diagnosis initially missed by genetic analysis. CONCLUSION: Metabolomics-based gene function tests provide additional value in the diagnostic trajectory of patients with suspected IMD by enhancing and accelerating diagnostic success.


Subject(s)
Delayed Diagnosis , Metabolic Diseases , Humans , Retrospective Studies , Metabolomics , Biomarkers
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166338, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35007711

ABSTRACT

Patients with the rare autosomal recessive disorder congenital lactase deficiency (CLD) present with severe, potentially life-threatening symptoms shortly after birth. Several variants have been characterized within the gene for lactase-phlorizin hydrolase (LCT) that are associated with CLD. Here, we analyze at the biochemical and cellular levels LCT mutants harboring the genetic variants p.Y1390*, p.E1612*, p.S1150Pfs*19, p.S1121L, p.R1587H, and p.S688P. Our data unequivocally demonstrate that these mutants are absolutely transport incompetent, some of which are readily degraded, and are enzymatically inactive. The current study contributes to and expands our understanding on the pathogenesis of CLD at the molecular level.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/pathology , Lactase-Phlorizin Hydrolase/genetics , Lactase/deficiency , Animals , COS Cells , Carbohydrate Metabolism, Inborn Errors/genetics , Chlorocebus aethiops , Humans , Lactase/genetics , Lactase-Phlorizin Hydrolase/chemistry , Lactase-Phlorizin Hydrolase/metabolism , Mutagenesis, Site-Directed , Mutation, Missense , Protein Folding , Protein Transport
6.
Mol Genet Metab Rep ; 25: 100681, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294374

ABSTRACT

AARS1 deficiency belongs to the group of disorders affecting aminoacyl-tRNA synthetases. To date, AARS1 deficiency has only been linked to neurologic disorders. We report a 6-year-old girl with microcephaly and developmental delay who presented with repeated episodes of acute liver failure. Whole-exome sequencing revealed compound heterozygosity for two missense variants within the AARS1 gene, p.[Leu298Gln];[Arg751Gly]), whose functional relevance was demonstrated by decreased enzymatic activity in fibroblasts. This is the first report that shows that AARS1 variants may be associated with recurrent acute liver failure.

7.
Nutrients ; 11(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557950

ABSTRACT

Congenital sucrase-isomaltase deficiency (CSID) is an autosomal recessive disorder of carbohydrate maldigestion and malabsorption caused by mutations in the sucrase-isomaltase (SI) gene. SI, together with maltase-glucoamylase (MGAM), belongs to the enzyme family of disaccharidases required for breakdown of -glycosidic linkages in the small intestine. The effects of homozygote and compound heterozygote inheritance trait of SI mutations in CSID patients have been well described in former studies. Here we propose the inclusion of heterozygote mutation carriers as a new entity in CSID, possibly presenting with milder symptoms. The hypothesis is supported by recent observations of heterozygote mutation carriers among patients suffering from CSID or patients diagnosed with functional gastrointestinal disorders. Recent studies implicate significant phenotypic heterogeneity depending on the character of the mutation and call for more research regarding the correlation of genetics, function at the cellular and molecular level and clinical presentation. The increased importance of SI gene variants in irritable bowel syndrome (IBS) or other functional gastrointestinal disorders FGIDs and their available symptom relief diets like fermentable oligo-, di-, mono-saccharides and polyols FODMAPs suggest that the heterozygote mutants may affect the disease development and treatment.


Subject(s)
Carbohydrate Metabolism, Inborn Errors/genetics , Genetic Predisposition to Disease , Heterozygote , Homozygote , Malabsorption Syndromes/genetics , Sucrase-Isomaltase Complex/deficiency , Humans , Irritable Bowel Syndrome/genetics , Mutation , Sucrase-Isomaltase Complex/genetics
8.
PLoS One ; 6(8): e23053, 2011.
Article in English | MEDLINE | ID: mdl-21857991

ABSTRACT

Homologous recombination (HR) is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB). However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Repair , Homologous Recombination , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Cross-Linking Reagents/pharmacology , DNA Breaks, Double-Stranded/drug effects , DNA Damage , DNA Replication/drug effects , Flow Cytometry , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mitomycin/pharmacology , Mutation , Protein Serine-Threonine Kinases/genetics , RNA Interference , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Thymidine/pharmacology , Transcriptional Activation/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...