Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3422, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647223

ABSTRACT

The Integrator complex processes 3'-ends of spliceosomal small nuclear RNAs (snRNAs). Furthermore, it regulates transcription of protein coding genes by terminating transcription after unstable pausing. The molecular basis for Integrator's functions remains obscure. Here, we show that INTS10, Asunder/INTS13 and INTS14 form a separable, functional Integrator module. The structure of INTS13-INTS14 reveals a strongly entwined complex with a unique chain interlink. Unexpected structural homology to the Ku70-Ku80 DNA repair complex suggests nucleic acid affinity. Indeed, the module displays affinity for DNA and RNA but prefers RNA hairpins. While the module plays an accessory role in snRNA maturation, it has a stronger influence on transcription termination after pausing. Asunder/INTS13 directly binds Integrator's cleavage module via a conserved C-terminal motif that is involved in snRNA processing and required for spermatogenesis. Collectively, our data establish INTS10-INTS13-INTS14 as a nucleic acid-binding module and suggest that it brings cleavage module and target transcripts into proximity.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nucleic Acids/metabolism , Cell Cycle Proteins/chemistry , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Ku Autoantigen/chemistry , Mutation/genetics , Nucleic Acid Conformation , Protein Binding , Protein Domains , Protein Multimerization , RNA/chemistry , RNA/metabolism , RNA Processing, Post-Transcriptional , Structural Homology, Protein
2.
Proc Natl Acad Sci U S A ; 117(13): 7159-7170, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32179686

ABSTRACT

RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA-protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch-mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.


Subject(s)
RNA Helicases/metabolism , Repressor Proteins/metabolism , Adenosine Triphosphatases/metabolism , HEK293 Cells , Humans , Protein Conformation , Protein Domains , RNA/metabolism , RNA Helicases/chemistry , Spliceosomes
3.
Viruses ; 11(8)2019 08 13.
Article in English | MEDLINE | ID: mdl-31412613

ABSTRACT

Primary human airway epithelial cell (hAEC) cultures represent a universal platform to propagate respiratory viruses and characterize their host interactions in authentic target cells. To further elucidate specific interactions between human respiratory viruses and important host factors in the airway epithelium, it is important to make hAEC cultures amenable to genetic modification. However, the short and finite lifespan of primary cells in cell culture creates a bottleneck for the genetic modification of these cultures. In the current study, we show that the incorporation of the Rho-associated protein kinase (ROCK) inhibitor (Y-27632) during cell propagation extends the life span of primary human cells in vitro and thereby facilitates the incorporation of lentivirus-based expression systems. Using fluorescent reporters for fluorescence-activated cell sorting (FACS)-based sorting, we generated homogenously fluorescent hAEC cultures that differentiate normally after lentiviral transduction. As a proof-of-principle, we demonstrate that host gene expression can be modulated post-differentiation via inducible short hairpin (sh)RNA-mediated knockdown. Importantly, functional characterization of these transgenic hAEC cultures with exogenous poly (I:C), as a proxy for virus infection, demonstrates that such modifications do not influence the host innate immune response. Moreover, the propagation kinetics of both human coronavirus 229E (HCoV-229E) and human respiratory syncytial virus (hRSV) were not affected. Combined, these results validate our newly established protocol for the genetic modification of hAEC cultures, thereby unlocking a unique potential for detailed molecular characterization of virus-host interactions in human respiratory epithelium.


Subject(s)
Coronavirus 229E, Human/physiology , Coronavirus Infections/virology , Epithelial Cells/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/physiology , Cell Line , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/growth & development , Host-Pathogen Interactions , Humans , Primary Cell Culture , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/growth & development , Virus Cultivation
4.
Genome Announc ; 5(45)2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29122875

ABSTRACT

We report here the complete genome sequences of three border disease virus (BDV) strains of the same subgenotype isolated in Switzerland from a sheep, a cow, and a pig, respectively. This is the first report of full-length sequences of a tentatively new subgenotype isolated from three different species of cloven-hoofed farm animals.

5.
PLoS Pathog ; 13(2): e1006195, 2017 02.
Article in English | MEDLINE | ID: mdl-28158275

ABSTRACT

Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.


Subject(s)
Coronaviridae/enzymology , Coronavirus Infections/immunology , Endonucleases/immunology , Immune Evasion/physiology , Viral Proteins/immunology , Animals , Coronaviridae/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...