Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
medRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464240

ABSTRACT

MTSS1 (metastasis suppressor 1) is an I-BAR protein that regulates cytoskeleton dynamics through interactions with actin, Rac, and actin-associated proteins. In a prior study, we identified genetic variants in a cardiac-specific enhancer upstream of MTSS1 that reduce human left ventricular (LV) MTSS1 expression and associate with protection against dilated cardiomyopathy (DCM). We sought to probe these effects further using population genomics and in vivo murine models. We crossed Mtss1-/- mice with a transgenic (Tg) murine model of human DCM caused by the D230N pathogenic mutation in Tpm1 (tropomyosin 1). In females, Tg/Mtss1+/- mice had significantly increased LV ejection fraction and reduced LV volumes relative to their Tg/Mtss1+/+ counterparts, signifying partial rescue of DCM due to Mtss1 haploinsufficiency. No differences were observed in males. To study effects in humans, we fine-mapped the MTSS1 locus with 82 cardiac magnetic resonance (CMR) traits in 22,381 UK Biobank participants. MTSS1 enhancer variants showed interaction with biological sex in their associations with several CMR traits. After stratification by biological sex, associations with CMR traits and colocalization with MTSS1 expression in the Genotype-Tissue Expression (GTEx) Project were observed principally in women and were substantially weaker in men. These findings suggest sex dimorphism in the effects of MTSS1-lowering alleles, and parallel the increased LV ejection fraction and reduced LV volumes observed female Tg/Mtss1+/- mice. Together, our findings at the MTSS1 locus suggest a genetic basis for sex dimorphism in cardiac remodeling and motivate sex-specific study of common variants associated with cardiac traits and disease.

2.
Circ Res ; 133(4): 353-365, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37462036

ABSTRACT

BACKGROUND: Despite advances in treatment, myocardial infarction (MI) is a leading cause of heart failure and death worldwide, with both ischemia and reperfusion (I/R) causing cardiac injury. A previous study using a mouse model of nonreperfused MI showed activation of brown adipose tissue (BAT). Recent studies showed that molecules secreted by BAT target the heart. We investigated whether BAT attenuates cardiac injury in I/R and sought to identify potential cardioprotective proteins secreted by BAT. METHODS: Myocardial I/R surgery with or without BAT transplantation was performed in wild-type (WT) mice and in mice with impaired BAT function (uncoupling protein 1 [Ucp1]-deficient mice). To identify potential cardioprotective factors produced by BAT, RNA-seq (RNA sequencing) was performed in BAT from WT and Ucp1-/- mice. Subsequently, myocardial I/R surgery with or without BAT transplantation was performed in Bmp3b (bone morphogenetic protein 3b)-deficient mice, and WT mice subjected to myocardial I/R were treated using BMP3b. RESULTS: Dysfunction of BAT in mice was associated with larger MI size after I/R; conversely, augmenting BAT by transplantation decreased MI size. We identified Bmp3b as a protein secreted by BAT after I/R. Compared with WT mice, Bmp3b-deficient mice developed larger MIs. Increasing functional BAT by transplanting BAT from WT mice to Bmp3b-deficient mice reduced I/R injury whereas transplanting BAT from Bmp3b-deficient mice did not. Treatment of WT mice with BMP3b before reperfusion decreased MI size. The cardioprotective effect of BMP3b was mediated through SMAD1/5/8. In humans, the plasma level of BMP3b increased after MI and was positively correlated with the extent of cardiac injury. CONCLUSIONS: The results of this study suggest a cardioprotective role of BAT and BMP3b, a protein secreted by BAT, in a model of I/R injury. Interventions increasing BMP3b levels or targeting Smad 1/5 may represent novel therapeutic approaches to decrease myocardial damage in I/R injury.


Subject(s)
Coronary Artery Disease , Growth Differentiation Factor 10 , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Animals , Humans , Mice , Adipose Tissue, Brown/metabolism , Growth Differentiation Factor 10/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Reperfusion
3.
Cell Metab ; 34(11): 1749-1764.e7, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36223763

ABSTRACT

Pharmacologic activation of branched-chain amino acid (BCAA) catabolism is protective in models of heart failure (HF). How protection occurs remains unclear, although a causative block in cardiac BCAA oxidation is widely assumed. Here, we use in vivo isotope infusions to show that cardiac BCAA oxidation in fact increases, rather than decreases, in HF. Moreover, cardiac-specific activation of BCAA oxidation does not protect from HF even though systemic activation does. Lowering plasma and cardiac BCAAs also fails to confer significant protection, suggesting alternative mechanisms of protection. Surprisingly, activation of BCAA catabolism lowers blood pressure (BP), a known cardioprotective mechanism. BP lowering occurred independently of nitric oxide and reflected vascular resistance to adrenergic constriction. Mendelian randomization studies revealed that elevated plasma BCAAs portend higher BP in humans. Together, these data indicate that BCAA oxidation lowers vascular resistance, perhaps in part explaining cardioprotection in HF that is not mediated directly in cardiomyocytes.


Subject(s)
Amino Acids, Branched-Chain , Heart Failure , Humans , Blood Pressure , Amino Acids, Branched-Chain/metabolism , Heart , Heart Failure/metabolism , Energy Metabolism
4.
Nat Cardiovasc Res ; 1(1): 45-58, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35036997

ABSTRACT

The heart is a highly metabolic organ that uses multiple energy sources to meet its demand for ATP production. Diurnal feeding-fasting cycles result in substrate availability fluctuations which, together with increased energetic demand during the active period, impose a need for rhythmic cardiac metabolism. The nuclear receptors REV-ERBα and ß are essential repressive components of the molecular circadian clock and major regulators of metabolism. To investigate their role in the heart, here we generated mice with cardiomyocyte (CM)-specific deletion of both Rev-erbs, which died prematurely due to dilated cardiomyopathy. Loss of Rev-erbs markedly downregulated fatty acid oxidation genes prior to overt pathology, which was mediated by induction of the transcriptional repressor E4BP4, a direct target of cardiac REV-ERBs. E4BP4 directly controls circadian expression of Nampt and its biosynthetic product NAD+ via distal cis-regulatory elements. Thus, REV-ERB-mediated E4BP4 repression is required for Nampt expression and NAD+ production by the salvage pathway. Together, these results highlight the indispensable role of circadian REV-ERBs in cardiac gene expression, metabolic homeostasis and function.

5.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34403369

ABSTRACT

In recent decades, treatments for myocardial infarction (MI), such as stem and progenitor cell therapy, have attracted considerable scientific and clinical attention but failed to improve patient outcomes. These efforts indicate that more rigorous mechanistic and functional testing of potential MI therapies is required. Recent studies have suggested that augmenting post-MI lymphatic growth via VEGF-C administration improves cardiac function. However, the mechanisms underlying this proposed therapeutic approach remain vague and untested. To more rigorously test the role of lymphatic vessel growth after MI, we examined the post-MI cardiac function of mice in which lymphangiogenesis had been blocked genetically by pan-endothelial or lymphatic endothelial loss of the lymphangiogenic receptor VEGFR3 or global loss of the VEGF-C and VEGF-D ligands. The results obtained using all 3 genetic approaches were highly concordant and demonstrated that loss of lymphatic vessel growth did not impair left ventricular ejection fraction 2 weeks after MI in mice. We observed a trend toward excess fluid in the infarcted region of the left ventricle, but immune cell infiltration and clearance were unchanged with loss of expanded lymphatics. These studies refute the hypothesis that lymphangiogenesis contributes significantly to cardiac function after MI, and suggest that any effect of exogenous VEGF-C is likely to be mediated by nonlymphangiogenic mechanisms.


Subject(s)
Heart/physiopathology , Lymphangiogenesis/physiology , Myocardial Infarction/physiopathology , Animals , Mice , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor Receptor-3/physiology , Ventricular Function, Left
6.
Hypertension ; 77(2): 557-570, 2021 02.
Article in English | MEDLINE | ID: mdl-33356402

ABSTRACT

No drug therapy has shown to limit abdominal aortic aneurysm (AAA) growth or rupture, and the understanding of the disease biology is incomplete; whereby, one challenge of vascular medicine is the development of good animal models and therapies for this life-threatening condition. The nuclear receptor NOR-1 (neuron-derived orphan receptor 1) controls biological processes involved in AAA; however, whether it plays a role in this pathology is unknown. Through a gain-of-function approach we assessed the impact of NOR-1 expression on the vascular response to Ang II (angiotensin II). We used 2 mouse models that overexpress human NOR-1 in the vasculature, one of them specifically in vascular smooth muscle cells. NOR-1 transgenesis amplifies the response to Ang II enhancing vascular inflammation (production of proinflammatory cytokines, chemokines, and reactive oxygen species), increasing MMP (matrix metalloproteinase) activity and disturbing elastin integrity, thereby broking the resistance of C57BL/6 mice to Ang II-induced AAA. Genes encoding for proteins critically involved in AAA formation (Il [interleukin]-6, Il-1ß, Cxcl2, [C-X-C motif chemokine ligand 2], Mcp-1 [monocyte chemoattractant protein 1], and Mmp2) were upregulated in aneurysmal tissues. Both animal models show a similar incidence and severity of AAA, suggesting that high expression of NOR-1 in vascular smooth muscle cell is a sufficient condition to strengthen the response to Ang II. These alterations, including AAA formation, were prevented by the MMP inhibitor doxycycline. Microarray analysis identified gene sets that could explain the susceptibility of transgenic animals to Ang II-induced aneurysms, including those related with extracellular matrix remodeling, inflammatory/immune response, sympathetic activity, and vascular smooth muscle cell differentiation. These results involve NOR-1 in AAA and validate mice overexpressing this receptor as useful experimental models.


Subject(s)
Aneurysm/metabolism , Angiotensin II/pharmacology , DNA-Binding Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/metabolism , Aneurysm/genetics , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Elastin/metabolism , Inflammation/genetics , Inflammation/metabolism , Matrix Metalloproteinases/metabolism , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Nerve Tissue Proteins/genetics , Oxidative Stress/physiology , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Signal Transduction/drug effects
7.
Am J Physiol Endocrinol Metab ; 319(2): E363-E375, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32603262

ABSTRACT

Bone morphogenetic protein (BMP) receptor signaling is critical for the regulation of the endocrine system and cardiovascular structure and function. The objective of this study was to investigate whether Bmp3b, a glycoprotein synthetized and secreted by adipose tissue, is necessary to regulate glucose and lipid metabolism, adipogenesis, and cardiovascular remodeling. Over the course of 4 mo, Bmp3b-knockout (Bmp3b-/-) mice gained more weight than wild-type (WT) mice. The plasma levels of cholesterol and triglycerides were higher in Bmp3b-/- mice than in WT mice. Bmp3b-/- mice developed insulin resistance and glucose intolerance. The basal heart rate was higher in Bmp3b-/- mice than in WT mice, and echocardiography revealed eccentric remodeling in Bmp3b-/- mice. The expression of adipogenesis-related genes in white adipose tissue was higher in Bmp3b-/- mice than in WT control mice. In vitro studies showed that Bmp3b modulates the activity of the C/ebpα promoter, an effect mediated by Smad2/3. The results of this study suggest that Bmp3b is necessary for the maintenance of homeostasis in terms of age-related weight gain, glucose metabolism, and left ventricular (LV) remodeling and function. Interventions that increase the level or function of BMP3b may decrease cardiovascular risk and pathological cardiac remodeling.


Subject(s)
Adipogenesis/physiology , Growth Differentiation Factor 10/deficiency , Growth Differentiation Factor 10/physiology , Metabolic Syndrome/etiology , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Bone Morphogenetic Protein 3/deficiency , Bone Morphogenetic Protein 3/physiology , Dyslipidemias/etiology , Female , Glucose Intolerance/etiology , Heart Diseases/etiology , Heart Diseases/physiopathology , Insulin Resistance/physiology , Male , Metabolic Syndrome/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/pathology , Signal Transduction/physiology
8.
Clin Sci (Lond) ; 134(3): 359-377, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31985010

ABSTRACT

Hypertensive cardiac hypertrophy (HCH) is a common cause of heart failure (HF), a major public health problem worldwide. However, the molecular bases of HCH have not been completely elucidated. Neuron-derived orphan receptor-1 (NOR-1) is a nuclear receptor whose role in cardiac remodelling is poorly understood. The aim of the present study was to generate a transgenic mouse over-expressing NOR-1 in the heart (TgNOR-1) and assess the impact of this gain-of-function on HCH. The CAG promoter-driven transgenesis led to viable animals that over-expressed NOR-1 in the heart, mainly in cardiomyocytes and also in cardiofibroblasts. Cardiomyocytes from TgNOR-1 exhibited an enhanced cell surface area and myosin heavy chain 7 (Myh7)/Myh6 expression ratio, and increased cell shortening elicited by electric field stimulation. TgNOR-1 cardiofibroblasts expressed higher levels of myofibroblast markers than wild-type (WT) cells (α 1 skeletal muscle actin (Acta1), transgelin (Sm22α)) and were more prone to synthesise collagen and migrate. TgNOR-1 mice experienced an age-associated remodelling of the left ventricle (LV). Angiotensin II (AngII) induced the cardiac expression of NOR-1, and NOR-1 transgenesis exacerbated AngII-induced cardiac hypertrophy and fibrosis. This effect was associated with the up-regulation of hypertrophic (brain natriuretic peptide (Bnp), Acta1 and Myh7) and fibrotic markers (collagen type I α 1 chain (Col1a1), Pai-1 and lysyl oxidase-like 2 (Loxl2)). NOR-1 transgenesis up-regulated two key genes involved in cardiac hypertrophy (Myh7, encoding for ß-myosin heavy chain (ß-MHC)) and fibrosis (Loxl2, encoding for the extracellular matrix (ECM) modifying enzyme, Loxl2). Interestigly, in transient transfection assays, NOR-1 drove the transcription of Myh7 and Loxl2 promoters. Our findings suggest that NOR-1 is involved in the transcriptional programme leading to HCH.


Subject(s)
Cardiomegaly/genetics , Cardiomegaly/pathology , Disease Progression , Gene Expression Regulation , Myocardium/pathology , Nuclear Receptor Subfamily 4, Group A, Member 3/metabolism , Angiotensin II , Animals , Biomarkers/metabolism , Cardiomegaly/diagnostic imaging , Cardiomegaly/physiopathology , Collagen/metabolism , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Electrocardiography , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Inflammation/pathology , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Transcription, Genetic , Ventricular Remodeling
9.
FASEB J ; 31(10): 4588-4599, 2017 10.
Article in English | MEDLINE | ID: mdl-28666984

ABSTRACT

The nuclear receptor NOR-1 (NR4A3) has recently been involved in the regulation of extracellular matrix (ECM) proteins associated with neointimal thickening and the vascular control of hemostasis. We sought to find as-yet unidentified NOR-1 target genes in human vascular smooth muscle cells (VSMCs). An in silico analysis identified putative NOR-1 response elements in the proximal promoter region of several genes encoding for ECM proteins, including vitronectin (VTN). Lentiviral overexpression of NOR-1 strongly increased VTN mRNA and protein levels, whereas NOR-1 silencing significantly reduced VTN expression. Deletion and site-directed mutagenesis studies, as well as EMSA and chromatin immunoprecipitation, identified the NBRE(-202/-195) site in the VTN promoter as an essential element for NOR-1 responsiveness. Furthermore, NOR-1 and VTN colocalized in VSMCs in human atherosclerotic lesions. VTN levels were increased in cell supernatants from VSMCs that overexpress NOR-1. Cell supernatants from VSMCs overexpressing NOR-1 induced cell migration to a greater extent than supernatants from control cells, and this effect was attenuated when cell supernatants were preincubated with anti-VTN blocking antibodies or VTN was silenced in supernatant-generating cells. These results indicate that VTN is a target of NOR-1 and suggest that this multifunctional glycoprotein may participate in vascular responses mediated by this nuclear receptor.-Martí-Pàmies, I., Cañes, L., Alonso, J., Rodríguez, C., Martínez-González, J. The nuclear receptor NOR-1/NR4A3 regulates the multifunctional glycoprotein vitronectin in human vascular smooth muscle cells.


Subject(s)
Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vitronectin/metabolism , Cell Movement/physiology , Cells, Cultured , Extracellular Matrix Proteins/metabolism , Humans , Promoter Regions, Genetic/genetics
10.
Sci Rep ; 6: 34056, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27654514

ABSTRACT

Vascular cell survival is compromised under pathological conditions such as abdominal aortic aneurysm (AAA). We have previously shown that the nuclear receptor NOR-1 is involved in the survival response of vascular cells to hypoxia. Here, we identify the anti-apoptotic protein cIAP2 as a downstream effector of NOR-1. NOR-1 and cIAP2 were up-regulated in human AAA samples, colocalizing in vascular smooth muscle cells (VSMC). While NOR-1 silencing reduced cIAP2 expression in vascular cells, lentiviral over-expression of this receptor increased cIAP2 mRNA and protein levels. The transcriptional regulation of the human cIAP2 promoter was analyzed in cells over-expressing NOR-1 by luciferase reporter assays, electrophoretic mobility shift analysis and chromatin immunoprecipitation, identifying a NGFI-B site (NBRE-358/-351) essential for NOR-1 responsiveness. NOR-1 and cIAP2 were up-regulated by hypoxia and by a hypoxia mimetic showing a similar time-dependent pattern. Deletion and site-directed mutagenesis studies show that NOR-1 mediates the hypoxia-induced cIAP2 expression. While NOR-1 over-expression up-regulated cIAP2 and limited VSMC apoptosis induced by hypoxic stress, cIAP2 silencing partially prevented this NOR-1 pro-survival effect. These results indicate that cIAP2 is a target of NOR-1, and suggest that this anti-apoptotic protein is involved in the survival response to hypoxic stress mediated by NOR-1 in vascular cells.

11.
Sci Rep ; 6: 25944, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27181368

ABSTRACT

Recent works have highlighted the role of NOR-1 in both smooth and skeletal muscle, and have proposed this nuclear receptor as a nexus that coordinates muscle performance and metabolic capacity. However, no muscle specific genes regulated by NOR-1 have been identified so far. To identify NOR-1 target genes, we over-expressed NOR-1 in human vascular smooth muscle cells (VSMC). These cells subjected to sustained over-expression of supraphysiological levels of NOR-1 experienced marked phenotypic changes and up-regulated the skeletal muscle protein X-linked (SMPX), a protein typically expressed in striated muscle and associated to cell shape. By transcriptional studies and DNA-protein binding assays, we identified a non-consensus NBRE site in human SMPX promoter, critical for NOR-1 responsiveness. The expression of SMPX was higher in human skeletal muscle myoblasts (HSMM) than in human VSMC, and further increased in HSMM differentiated to myotubes. NOR-1 silencing prevented SMPX expression in HSMM, as well as their differentiation to myotubes, but the up-regulation of SMPX was dispensable for HSMM differentiation. Our results indicate that NOR-1 regulate SMPX in human muscle cells and acts as a muscle regulatory factor, but further studies are required to unravel its role in muscle differentiation and hypertrophy.


Subject(s)
Membrane Transport Proteins/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Binding Sites , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Humans , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/chemistry , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Promoter Regions, Genetic , Transcriptional Activation
12.
Cardiovasc Res ; 110(3): 431-42, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27089918

ABSTRACT

AIMS: Destructive remodelling of extracellular matrix (ECM) and inflammation lead to dilation and ultimately abdominal aortic aneurysm (AAA). Fibulin-5 (FBLN5) mediates cell-ECM interactions and elastic fibre assembly and is critical for ECM remodelling. We aimed to characterize FBLN5 regulation in human AAA and analyse the underlying mechanisms. METHODS AND RESULTS: FBLN5 expression was significantly decreased in human aneurysmatic aortas compared with healthy vessels. Local FBLN5 knockdown promoted aortic dilation and enhanced vascular expression of inflammatory markers in Ang II-infused C57BL/6J mice. Inflammatory stimuli down-regulated FBLN5 expression and transcriptional activity in human aortic vascular smooth muscle cells (VSMC). Further, aortic FBLN5 expression was reduced in LPS-challenged mice. A SOX response element was critical for FBLN5 promoter activity. The SOX9 expression pattern in human AAA parallels that of FBLN5, and like FBLN5, it was reduced in TNFα-stimulated VSMC. Interestingly, SOX9 over-expression prevented the cytokine-mediated reduction of FBLN5 expression and transcription. The inhibition of Class I histone deacetylases (HDACs) by MS-275 or gene silencing attenuated the inflammation-mediated decrease of FBLN5 expression in VSMC and in the vascular wall. Consistently, HDAC inhibition counteracted the reduction of SOX9 expression induced by inflammatory stimuli and prevented the TNFα-mediated decrease in the binding of SOX9 to FBLN5 promoter normalizing FBLN5 expression. CONCLUSION: We evidence the deregulation of FBLN5 in human AAA and identify a SOX9/HDAC-dependent mechanism involved in the down-regulation of FBLN5 by inflammation. HDAC inhibitors or pharmacological approaches that aimed to preserve FBLN5 could be useful to prevent the disorganization of ECM induced by inflammation in AAA.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Epigenesis, Genetic , Extracellular Matrix Proteins/metabolism , Inflammation Mediators/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Recombinant Proteins/metabolism , Angiotensin II , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Binding Sites , Case-Control Studies , Cells, Cultured , Dilatation, Pathologic , Disease Models, Animal , Down-Regulation , Epigenesis, Genetic/drug effects , Extracellular Matrix Proteins/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Promoter Regions, Genetic , RNA Interference , Recombinant Proteins/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription, Genetic , Transfection , Tumor Necrosis Factor-alpha/metabolism
13.
Thromb Haemost ; 113(6): 1323-34, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25809189

ABSTRACT

Matrix metalloproteinases (MMPs) are associated with tissue remodelling and repair. In non-vascular tissues, NR4A receptors have been involved in the regulation of MMPs by transcriptional repression mechanisms. Here, we analyse alternative mechanisms involving NR4A receptors in the modulation of MMP activity in vascular smooth muscle cells (VSMC). Lentiviral overexpression of NR4A receptors (NOR-1, Nurr1 and Nur77) in human VSMC strongly decreased MMP-2 and MMP-9 activities (analysed by zymography and DQ-gelatin assays) and protein levels. NR4A receptors also down-regulated MMP-2 mRNA levels. Real-time PCR analysis evidenced that alpha-2-macroglobulin (A2M), but not other MMP inhibitors (TIMP-1 and TIMP-2) were up-regulated in NR4A-transduced cells. Interestingly, A2M was expressed in human vascular tissues including the smooth muscle media layer. While NR4A receptors increased A2M expression and secretion in VSMC, NR4A knockdown significantly reduced basal A2M expression in these cells. The direct transcriptional regulation of the human A2M promoter by NR4A receptors was characterised in luciferase reporter assays, electrophoretic mobility shift assays and by chromatin immunoprecipitation, identifying a NGFI-B response element (NBRE-71/-64) essential for the NR4A-mediated induction. The blockade of A2M partially prevented the reduction of MMPs activity observed in NR4A-transduced cells. Although mouse A2M promoter was unresponsive to NR4A receptors, vascular MMP expression was attenuated in transgenic mice over-expressing human NOR-1 in VSMC challenged with lipopolysaccharide. Our results show that the pan-proteinase inhibitor A2M is expressed in the vasculature and that NR4A receptors modulate VSMC MMP activity by several mechanisms including the up-regulation of A2M.


Subject(s)
DNA-Binding Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/metabolism , alpha-Macroglobulins/metabolism , Animals , Binding Sites , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Expression Regulation, Enzymologic , Humans , Lipopolysaccharides/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Promoter Regions, Genetic , RNA Interference , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Transcription, Genetic , Transfection , alpha-Macroglobulins/genetics
14.
J Mol Cell Cardiol ; 80: 34-44, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25536180

ABSTRACT

Recent work has highlighted the role of NR4A receptors in atherosclerosis and inflammation. In vascular smooth muscle cell (VSMC) proliferation, however, NOR-1 (neuron-derived orphan receptor-1) exerts antagonistic effects to Nur77 and Nurr1. The aim of this study was to analyse the effect of NOR-1 in VSMC inflammatory response. We assessed the consequence of a gain-of-function of this receptor on the response of VSMC to inflammatory stimuli. In human VSMC, lentiviral over-expression of NOR-1 reduced lipopolysaccharide (LPS)-induced up-regulation of cytokines (IL-1ß, IL-6 and IL-8) and chemokines (MCP-1 and CCL20). Similar effects were obtained in cells stimulated with TNFα or oxLDL. Conversely, siRNA-mediated NOR-1 inhibition significantly increased the expression of pro-inflammatory mediators. Interestingly, in the aortas from transgenic mice that over-express human NOR-1 in VSMC (TgNOR-1), the up-regulation of cytokine/chemokine by LPS was lower compared to wild-type littermates. Similar results were obtained in VSMC from transgenic animals. NOR-1 reduced the transcriptional activity of NFκB sensitive promoters (in transient transfections), and the binding of NFκB to its responsive element (in electrophoretic mobility shift assays). Furthermore, NOR-1 prevented the activation of NFκB pathway by decreasing IκBα phosphorylation/degradation and inhibiting the phosphorylation and subsequent translocation of p65 to the nucleus (assessed by Western blot and immunocytochemistry). These effects were associated with an attenuated phosphorylation of ERK1/2, p38 MAPK and Jun N-terminal kinase, pathways involved in the activation of NFκB. In mouse challenged with LPS, the activation of the NFκB signalling was also attenuated in the aorta from TgNOR-1. Our data support a role for NOR-1 as a negative modulator of the acute response elicited by pro-inflammatory stimuli in the vasculature.


Subject(s)
DNA-Binding Proteins/metabolism , Inflammation/metabolism , Membrane Transport Proteins/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/metabolism , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , DNA-Binding Proteins/genetics , Disease Models, Animal , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation Mediators/metabolism , Membrane Transport Proteins/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Protein Binding , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Signal Transduction , Transcriptional Activation
15.
Thromb Haemost ; 112(4): 812-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24990180

ABSTRACT

Lysyl oxidase (LOX) is an extracellular matrix-modifying enzyme that seems to play a critical role in vascular remodelling. However, the lack of viable LOX-deficient animal models has been an obstacle to deep in LOX biology. In this study we have developed a transgenic mouse model that over-expresses LOX in vascular smooth muscle cells (VSMC) to clarify whether LOX could regulate VSMC phenotype and vascular remodelling. The SM22α proximal promoter drove the expression of a transgene containing the human LOX cDNA. Two stable transgenic lines, phenotypically indistinguishable, were generated by conventional methods (TgLOX). Transgene expression followed the expected SMC-specific pattern. In TgLOX mice, real-time PCR and immunohistochemistry evidenced a strong expression of LOX in the media from aorta and carotid arteries, coincident with a higher proportion of mature collagen. VSMC isolated from TgLOX mice expressed high levels of LOX pro-enzyme, which was properly secreted and processed into mature and bioactive LOX. Interestingly, cell proliferation was significantly reduced in cells from TgLOX mice. Transgenic VSMC also exhibited low levels of Myh10 (marker of SMC phenotypic switching), PCNA (marker of cell proliferation) and MCP-1, and a weak activation of Akt and ERK1/2 in response to mitogenic stimuli. Accordingly, neointimal thickening induced by carotid artery ligation was attenuated in TgLOX mice that also displayed a reduction in PCNA and MCP-1 immunostaining. Our results give evidence that LOX plays a critical role in vascular remodelling. We have developed a new animal model to study the role of LOX in vascular biology.


Subject(s)
Protein-Lysine 6-Oxidase/metabolism , Vascular Remodeling/genetics , Animals , Carotid Arteries/pathology , Cell Movement , Cell Proliferation , Chemokine CCL2/metabolism , Collagen/chemistry , Collagen/metabolism , DNA, Complementary/metabolism , Disease Models, Animal , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Myosin Heavy Chains/metabolism , Nonmuscle Myosin Type IIB/metabolism , Phenotype , Proliferating Cell Nuclear Antigen/metabolism , Promoter Regions, Genetic , Transfection , Transgenes , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...