Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Front Hum Neurosci ; 17: 1236065, 2023.
Article in English | MEDLINE | ID: mdl-37746054

ABSTRACT

Introduction: Recent advancements in functional near-infrared spectroscopy technology have offered a portable, wireless, wearable solution to measure the activity of the prefrontal cortex (PFC) in the human neuroscience field. This study is the first to validate the different contributions made by the PFC's eight subregions in healthy young adults to the reactive recovery responses following treadmill-induced unpredictable slip perturbations and vibrotactile cueing (i.e., precues). Methods: Our fall-inducing technology platform equipped with a split-belt treadmill provided unpredictable slip perturbations to healthy young adults while walking at their self-selected walking speed. A portable, wireless, wearable, and multi-channel (48 channels) functional near-infrared spectroscopy system evaluated the activity of PFC's eight subregions [i.e., right and left dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), frontopolar prefrontal cortex (FPFC), and orbitofrontal cortex (OFC)] as quantified by oxyhemoglobin and deoxyhemoglobin concentrations. A motion capture system and two force plates beneath the split-belt treadmill were used to quantify participants' kinematic and kinetic behavior. All participants completed 6 trials: 2 consecutive trials without vibrotactile cueing and with a slip perturbation (control trials); 3 trials with vibrotactile cueing [2 trials with the slip perturbation (cueing trial) and 1 trial without the slip perturbation (catch trial)], and 1 trial without vibrotactile cueing and with a slip perturbation (post-control trial). The PFC subregions' activity and kinematic behavior were assessed during the three periods (i.e., standing, walking, and recovery periods). Results: Compared to the walkers' standing and walking periods, recovery periods showed significantly higher and lower levels of oxyhemoglobin and deoxyhemoglobin concentrations, respectively, in the right and left DLPFC, VLPFC, and FPFC, regardless of the presence of vibrotactile cueing. However, there was no significant difference in the right and left OFC between the three periods. Kinematic analyses confirmed that vibrotactile cueing significantly improved reactive recovery responses without requiring more involvement by the PFC subregions, which suggests that the sum of attentional resources is similar in cued and non-cued motor responses. Discussion: The results could inform the design of wearable technologies that alert their users to the risks of falling and assist with the development of new gait perturbation paradigms that prompt reactive responses.

2.
PLoS One ; 18(6): e0287588, 2023.
Article in English | MEDLINE | ID: mdl-37352272

ABSTRACT

OBJECTIVE: The goal of this study was to compare erector spinae muscle fatigue, upper limb muscle activity, body areas discomfort, and heart rate during a 10-min carrying task with and without a passive upper-body exoskeleton (CarrySuitⓇ) while considering sex influences. BACKGROUND: Passive exoskeletons are commercially available to assist lifting or carrying task. However, evidence of their impact on muscle activity, fatigue, heart rate and discomfort are scarce and/or do not concur during carrying tasks. METHOD: Thirty participants (16 females and 14 male) performed a 10-min, 15kg load-carrying task with and without the exoskeleton in two non-consecutive days. Heart rate, and erector spinae, deltoid, biceps and brachioradialis muscle activity were recorded during the carrying tasks. In addition, erector spinae electromyography during an isometric hold test and discomfort ratings were measured before and after the task. RESULTS: While without the exoskeleton upper limb muscle activity increased or remained constant during the carrying task and showing high peak activation for both males and females, a significant activity reduction was observed with the exoskeleton. Low back peak activation, heart rate and discomfort were lower with than without the exoskeleton. In males muscle activation was significantly asymmetric without the exoskeleton and more symmetric with the exoskeleton. CONCLUSION: The tested passive exoskeleton appears to alleviate the physical workload and impact of carrying heavy loads on the upper limbs and lower back for both males and females.


Subject(s)
Exoskeleton Device , Female , Humans , Male , Heart Rate , Muscle, Skeletal/physiology , Electromyography , Back/physiology , Paraspinal Muscles , Biomechanical Phenomena
3.
Hum Factors ; 65(7): 1491-1505, 2023 11.
Article in English | MEDLINE | ID: mdl-34875887

ABSTRACT

OBJECTIVE: The effects of diverse periodic interventions on trapezius muscle fatigue and activity during a full day of computer work were investigated. BACKGROUND: Musculoskeletal disorders, including trapezius myalgia, may be associated with repeated exposure to prolonged low-level activity, even during light upper-extremity tasks including computer work. METHODS: Thirty healthy adults participated in a study that simulated two 6-hour workdays of computer work. One workday involved imposed periodic passive and active interventions aimed at disrupting trapezius contraction monotony (Intervention day), whereas the other workday did not (Control day). Trapezius muscle activity was quantified by the 3-dimensional acceleration of the jolt movement of the acromion produced by electrically induced muscle twitches. The spatio-temporal distribution of trapezius activity was measured through high-density surface electromyography (HD-EMG). RESULTS: The twitch acceleration magnitude in one direction was significantly different across measurement periods (p = 0.0156) on Control day, whereas no significant differences in any direction were observed (p > 0.05) on Intervention day. The HD-EMG from Intervention day showed that only significant voluntary muscle contractions (swing arms, Jacobson maneuver) induced a decrease in the muscle activation time and an increase in the spatial muscle activation areas (p < 0.01). CONCLUSION: Disruption of trapezius monotonous activity via brief voluntary contractions effectively modified the ensuing contraction pattern (twitch acceleration along one axis, active epochs reduction, and larger spatial distribution). The observed changes support an associated reduction of muscle fatigue. APPLICATION: This study suggests that disruptive intervention activity is efficient in reducing the impact of trapezius muscle fatigue.


Subject(s)
Muscle, Skeletal , Superficial Back Muscles , Adult , Humans , Muscle, Skeletal/physiology , Muscle Fatigue/physiology , Electromyography/methods , Muscle Contraction/physiology , Upper Extremity
4.
Hum Factors ; 65(7): 1525-1541, 2023 11.
Article in English | MEDLINE | ID: mdl-34595984

ABSTRACT

OBJECTIVE: Evaluate the effects of 10 min/day of yoga for 1 month on musculoskeletal discomfort and mood disturbance of home-office workers. BACKGROUND: The COVID-19 pandemic forced many people to switch to teleworking. The abrupt change from an office setting to an improvised home-office may negatively affect the musculoskeletal and emotional health of workers. By providing mental and physical exercises, yoga may be effective in reducing adverse effects. METHOD: Fifty-four participants (42 women, 12 men) followed a 1-month yoga program, while 40 participants (26 women, 14 men) continued with their common work routine. The Cornell Musculoskeletal Discomfort Questionnaire was used to evaluate severity, interference with work and frequency of pain, and to obtain a total discomfort score for 25 body areas. Mood disturbance was evaluated with the Profile of Mood States questionnaire. Both groups completed both questionnaires, before and after the experimentation period. RESULTS: After 1 month, for the yoga group only, significant reductions were observed in the discomfort of eyes, head, neck, upper and lower back, right wrist, and hips/buttocks, as well as reductions in discomfort severity, frequency and interference for the neck, upper and lower back. Total mood disturbance was also significantly reduced for the yoga group only. No favorable changes occurred for the control group. CONCLUSION: The yoga intervention program appears to reduce musculoskeletal discomfort and mood disturbance of home-office workers. APPLICATION: Sedentary workers may benefit from 10 min/day of yoga during the workday to attenuate potential physical and emotional discomfort during the current pandemic and beyond.


Subject(s)
COVID-19 , Yoga , Male , Humans , Female , Pandemics , Exercise , Neck
5.
Hum Factors ; 65(4): 562-574, 2023 06.
Article in English | MEDLINE | ID: mdl-34078143

ABSTRACT

OBJECTIVE: The goal of this study was to evaluate and compare lower-leg muscle fatigue, edema, and discomfort induced by the prolonged standing of security guards wearing regular socks and those wearing 15-20 or 20-30 mmHg compression stockings as intervention. BACKGROUND: Compression stockings are sometimes used by individuals standing all day at work. However, quantitative evidence showing their potential benefits for lower-leg health issues in healthy individuals during real working conditions is lacking. METHOD: Forty male security employees participated in the study. All were randomly assigned to the control or one of the two intervention groups (I15-20 or I20-30). Lower-leg muscle twitch force, volume, and discomfort ratings were measured before and after their regular 12-hr standing work shift. RESULTS: Significant evidence of lower-leg long-lasting muscle fatigue, edema, and discomfort was observed after standing work for guards wearing regular socks. However, no significant changes were found for guards wearing either compression stockings. CONCLUSION: In healthy individuals, compression stockings seem to attenuate efficiently the tested outcomes in the lower leg resulting from prolonged standing. APPLICATION: Occupational activities requiring prolonged standing may benefit from 15-20 or 20-30 mmHg compression stockings. As similar benefits were observed for both levels of compression, the lower level may be sufficient.


Subject(s)
Leg , Stockings, Compression , Humans , Male , Lower Extremity , Muscle Fatigue/physiology , Edema
6.
PLoS One ; 17(10): e0275174, 2022.
Article in English | MEDLINE | ID: mdl-36201499

ABSTRACT

Although it is relevant to understand spine and lower body motions in healthy individuals for a variety of applications, such as clinical diagnosis, implant design, and the analysis of treatment outcomes, proper assessment and characterization of normative gait symmetry in healthy individuals remains unclear. The purpose of this study was to investigate the in vivo 3-dimensional (3D) spine and lower body gait symmetry kinematics during treadmill walking in healthy individuals. Sixty healthy young adults (30 males and 30 females) were evaluated during normal and fast treadmill walking using a motion capture system approach. Statistical parametric mapping and the normalized symmetry index approaches were used to determine spine, pelvis, and lower body asymmetries during treadmill walking. The spine and pelvis angular motions associated with the left and right lower limb motions, as well as the left and right lower extremity joint angles were compared for normal and fast treadmill walking. The lower lumbar left-right rotation (5.74±0.04°) and hip internal rotation (5.33±0.18°) presented the largest degrees of asymmetry during normal treadmill. Upper lumbar left-right lateral flexion (1.48±0.14°) and knee flexion (2.98±0.13°) indicated the largest asymmetries and during fast treadmill walking. Few asymmetry patterns were similar between normal and fast treadmill walking, whereas others appeared either only during normal or fast treadmill walking in this cohort of participants. These findings could provide insights into better understanding gait asymmetry in healthy individuals, and use them as reference indicators in diagnosing and evaluating abnormal gait function.


Subject(s)
Gait , Walking , Biomechanical Phenomena , Exercise Test , Female , Humans , Knee Joint , Male , Range of Motion, Articular , Young Adult
7.
Hum Factors ; : 187208221110683, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35758896

ABSTRACT

OBJECTIVE: The goal of this study was to evaluate the prevalence and change in perception of physical discomfort, including musculoskeletal discomfort, during the COVID-19 pandemic and to determine associations of demographic factors, telework activity, and home office characteristics with the highest prevalence of discomfort. BACKGROUND: The COVID-19 pandemic forced a substantial increase in telework in many countries. The sudden change from a regular workplace to an improvised "home office" may have an impact on working conditions and physical symptoms of office workers. However, investigations in this area remain limited. METHOD: A cross-sectional study design was used to compare self-reported complaints of physical discomfort perceived from before with those during the pandemic. Associations between complaints and home office characteristics were investigated from 150 faculty and 51 administrative staff of an academic institution with an age range of 41.16 ± 10.20 (59% female). RESULTS: A significant increase of physical discomfort was found during the pandemic period for head, eyes, hand, and upper back for both staff and faculty and neck, shoulders, elbows, and lower back for faculty only. Logistic regression analyses point to associations with the lack of a laptop stand, uncomfortable desk, poor lighting, and sitting time, among others. CONCLUSION: A high prevalence of physical discomfort was reported by teleworkers during the COVID-19 pandemic. Some home office characteristics were associated with these discomforts. APPLICATION: Some telework characteristics seem to be risk factors for physical discomfort. Consideration should be given to teaching best practices for workstation setup and/or conducting other preventive interventions in the work environment.

8.
PLoS One ; 16(12): e0261140, 2021.
Article in English | MEDLINE | ID: mdl-34905578

ABSTRACT

The effects of treadmill workstation use on kinematic gait symmetry and computer work performance remain unclear. The purpose of this pilot study was to analyze the effects of treadmill workstation use on lower body motion symmetry while performing a typing task when compared to overground and treadmill walking. The lower body motion of ten healthy adults (6 males and 4 females) was recorded by a motion capture system. Hip, knee, and ankle joint rotations were computed and compared for each condition. Despite comparable lower body kinematic gait asymmetries across conditions, asymmetric knee flexion motions at early gait cycle were only found in treadmill workstation users (left knee significantly more flexed than the right one). This demonstrates that the interaction between walking and another task is dependent on the task cognitive content. Our findings suggest that lower body kinematic gait symmetry may be influenced by the use of treadmill workstations.


Subject(s)
Gait , Knee Joint/physiology , Lower Extremity/physiology , Range of Motion, Articular , Walking , Adolescent , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Male , Middle Aged , Pilot Projects , Young Adult
9.
Article in English | MEDLINE | ID: mdl-34263268

ABSTRACT

Unstructured and unregulated work is expanding fast among low- and middle-income countries (LMICs). Furthermore, accumulation of urban waste resulting from overconsumption is a global concern. Hence, waste management and recycling have received increased attention. One specific waste category pertaining to electrical and electronic waste (e-waste) is growing at a higher rate than other waste streams. Recycling of e-waste is largely informal and disproportionately relies on LMICs, exposing workers to various occupational and environmental health risks. In order to promote safer work practices and limit a broad range of occupational health and safety concerns associated with informal manual work, the broader psychosocial and sociocultural environment also deserves attention. This symposium will discuss contemporary issues in informal, unregulated, unstructured work in LMICs, primarily in Africa and South America. The goal of the symposium is to call attention to both, the unique occupational context of informal work, and the need for new ergonomics methods to address occupational exposure assessment and musculoskeletal injury prevention adapted to informal work in limited resource settings.

10.
Article in English | MEDLINE | ID: mdl-34263269

ABSTRACT

The unregulated and unorganized structure of informal electronic waste recycling worksites exposes workers to numerous occupational hazards. This context also presents research challenges in collecting exposure data to establish linkages with adverse health effects and development of risk-mitigating strategies. This paper presents some findings from a 5-year multinational and multi-institutional collaboration of academic and government partners, which documented extensive occupational and environmental health conditions at the Agbogbloshie electronic waste site in central Accra, Ghana.

11.
Article in English | MEDLINE | ID: mdl-34308445

ABSTRACT

Recycling of electrical and electronic waste (e-waste) in developing countries is mostly conducted in the informal sector consisting of low skilled workers. Informal e-waste recycling predominantly involves the physically demanding work of manually collecting, dismantling and burning of e-waste items to extract reusable components and valuable metals including gold or copper. This cross-sectional study investigated the effects of manual e-waste recycling work on the musculoskeletal health of 176 workers at Agbogbloshie in Accra, Ghana - the largest informal e-waste dumpsites in Africa. Findings indicate significant associations between prolonged walking and weighted MSD symptom scores for the lower extremities, and between manual material handlings tasks and weighted MSD symptom scores for the upper extremities and lower back. The study calls attention to the need for ergonomics research in the informal work sector to promote safer practices and address a range of worker health concerns.

12.
Neurosci Lett ; 757: 135992, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34051338

ABSTRACT

Age-related differences in proprioceptive asymmetries have received little attention. This study aimed to determine differences in asymmetry of the right/left upper limb proprioceptive systems between younger and older adults. Asymmetries were compared in two "eyes closed" experiments involving the same elbow joints. Position sense was tested in two matching conditions: ipsilateral remembered and contralateral concurrent. Movement sense was tested while reproducing with the opposite forearm the illusory movement elicited by distal tendon vibration applied to the reference forearm. Older adults exhibited a larger error when matching with the non-dominant than dominant forearm in the ipsilateral remembered condition and a disparate asymmetry in the contralateral condition when compared to younger adults. In addition, in older adults, the velocity of reproduced illusory movements was slower, and asymmetry in movement perception was not significant. The difference in proprioceptive asymmetry between younger and older adults might be attributed to a significant reduction of the sensory system gain affecting, more particularly, the left non-dominant arm sensory system via several physiological and neurophysiological mechanisms.


Subject(s)
Aging/physiology , Proprioception/physiology , Psychomotor Performance/physiology , Adult , Age Factors , Aged , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
13.
Gait Posture ; 88: 146-154, 2021 07.
Article in English | MEDLINE | ID: mdl-34044247

ABSTRACT

GOAL: This work aims to develop a planar piecewise continuous lumped muscle parameter (PPCLMP) model that can utilize inputs that can be obtained in a clinical or home setting using simple tools (e.g. video cameras and inertial sensors) to predict human walking gait. METHODS: The model characterizes the sagittal-plane movement of the lower limbs during the single stance phase as an inverted pendulum, the double stance phase as a kinematic chain, and the swing phase as a double pendulum. The joint angles and angular velocities at the end of one phase are used as the initial conditions of the next phase. The model predicts the gait cycle based on the initial joint angles and angular velocities via forward dynamics. The errors between the initial and end conditions are minimized by changing the input initial joint angles and angular velocities of the gait cycle. RESULTS: Sensitivity analysis showed that the errors between the initial and end conditions of a gait cycle were sensitive to the initial joint angles. The step length was sensitive to subject stature. The model only works for a certain range of initial conditions. CONCLUSIONS: The model can predict gait cycles based on forward dynamics and selects initial conditions that minimize the errors between the initial and end conditions of the gait cycle. The model utilizes 2-D representations of lower limbs and simplified representations of joint torques to reduce the required inputs for gait prediction and builds the foundation of gait assessment tools.


Subject(s)
Gait , Walking , Biomechanical Phenomena , Humans , Lower Extremity , Muscles
14.
Int J Ind Ergon ; 822021 Mar.
Article in English | MEDLINE | ID: mdl-33767518

ABSTRACT

Occupational exposure associated with unstructured, informal e-waste recycling has received very limited attention. This study aimed to quantify the occupational physical exposures among informal e-waste workers at the largest e-waste site in Africa. A cross-sectional field survey of 163 male e-waste workers was conducted using a self-report occupational physical activity questionnaire, along with direct work observations, and pedometer estimates of walking activity for a subset of workers (n = 42). Results indicated significant differences in self-reported 7-day work exposures among the three main e-waste job categories, namely, collectors (n = 70), dismantlers (n = 73) and burners (n = 20). Prolonged walking, sitting and standing on five or more days in the workweek was frequently reported by collectors (87%), dismantlers (82%) and burners (60%), respectively. Nearly 90% of collectors and burners and 60% of dismantlers reported lifting and carrying on five or more days in the workweek. The exposure combinations identified suggest a risk for musculoskeletal disorders (MSDs). Findings call attention to the need for research examining potential associations between physical exposures and MSDs affecting e-waste workers in Agbogbloshie. The high exposure variability both between and within workers has implications for future exposure assessments conducted in unregulated, informal work settings.

15.
Article in English | MEDLINE | ID: mdl-33669889

ABSTRACT

Informal recycling of electrical and electronic waste (e-waste) has myriad environmental and occupational health consequences, though information about the chronic musculoskeletal health effects on workers is limited. The aim of this study was to examine the prevalence and intensity of self-reported musculoskeletal disorder (MSD) symptoms among e-waste workers at Agbogbloshie in Ghana-the largest informal e-waste dumpsite in West Africa-relative to workers not engaged in e-waste recycling. A standardized musculoskeletal discomfort questionnaire was administered to 176 e-waste workers (73 collectors, 82 dismantlers, and 21 burners) and 41 workers in a reference group. The number of body parts with musculoskeletal discomfort were 1.62 and 1.39 times higher for collectors and dismantlers than burners, respectively. A 1-week discomfort prevalence was highest for collectors (91.8%) followed by dismantlers (89%), burners (81%), and the reference group (70.7%). The discomfort prevalence for e-waste workers was highest in the lower back (65.9%), shoulders (37.5%), and knees (37.5%). Whole-body pain scores (mean ± SE) were higher for collectors (83.7 ± 10.6) than dismantlers (45.5 ± 7.6), burners (34.0 ± 9.1), and the reference group (26.4 ± 5.9). Differences in prevalence, location, and intensity of MSD symptoms by the e-waste job category suggest specific work-related morbidity. Symptom prevalence and intensity call attention to the high risk for MSDs and work disability among informal e-waste workers, particularly collectors and dismantlers.


Subject(s)
Electronic Waste , Musculoskeletal Diseases , Occupational Exposure , Ghana/epidemiology , Humans , Musculoskeletal Diseases/epidemiology , Occupational Exposure/analysis , Recycling
16.
Proc Hum Factors Ergon Soc Annu Meet ; 65(1): 715-719, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35115743

ABSTRACT

Rudimentary methods for electronic waste (e-waste) recycling employed in developing countries are a source of work-related musculoskeletal disorders (WRMSDs). A summarized comparison of WRMSDs and preliminary exposure assessment among e-waste dismantlers (D) and burners (B) in Agbogbloshie, Ghana is presented. A cross-sectional study was conducted to investigate WRMSDs and associated risk factors using the Cornell Musculoskeletal Discomfort Questionnaire and a newly developed ergonomic assessment tool. Results indicated higher WRMSDs prevalence in the lower back (68% D vs. 52% B; p = 0.172), shoulder (41% D vs. 29% B; p = 0.279) and upper arm (33% D vs 5% B; p = 0.010). Moderate to severe trunk flexion, high force exertion, repetition and vibration were prevalent risk factors among workers and were significantly higher in dismantlers than burners (p ≤ 0.001). Detailed ergonomic studies investigating the relationship between physical exposures and WRMSDs are needed to provide a deeper understanding of WRMSD causation in e-waste workers and more particularly in unstructured, unregulated work.

17.
PLoS One ; 15(11): e0241562, 2020.
Article in English | MEDLINE | ID: mdl-33166309

ABSTRACT

The prefrontal cortex (PFC) is involved in cognitive control of motor activities and timing of future intensions. This study investigated the cognitive control of balance recovery in response to unpredictable gait perturbations and the role of PFC subregions in learning by repetition. Bilateral dorsolateral (DLPFC), ventrolateral (VLPFC), frontopolar (FPFC) and orbitofrontal (OFC) cortex hemodynamic changes induced by unpredictable slips were analyzed as a function of successive trials in ten healthy young adults. Slips were induced by the acceleration of one belt as the participant walked on a split-belt treadmill. A portable functional near-infrared spectroscope monitored PFC activities quantified by oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHbR) during the consecutive trial phases: standing, walking, slip-recovery. During the first 3 trials, the average oxyhemoglobin (ΔO2Hbavg) in the DLPFC, VLPFC, FPFC, and OFC cortex was significantly higher during slip-recovery than unperturbed walking or the standing baseline. Then, ΔO2Hbavg decreased progressively from trial-to-trial in the DLPFC, VLPFC, and FPFC, but increased and then remained constant in the OFC. The average deoxyhemoglobin (ΔHbRavg) presented mirror patterns. These changes after the third trial were paralleled by the progressive improvement of recovery revealed by kinematic variables. The results corroborate our previous hypothesis that only timing of the onset of a "good enough recovery motor program" is learned with practice. They also strongly support the assumption that the PFC contributes to the recall of pre-existing motor programs whose onset timing is adjusted by the OFC. Hence, learning is clearly divided into two steps delineated by the switch in activity of the OFC. Additionally, motor processes appear to share the working memory as well as decisional and predictive resources of the cognitive system.


Subject(s)
Gait/physiology , Learning/physiology , Postural Balance/physiology , Prefrontal Cortex/physiology , Adult , Brain Mapping , Female , Healthy Volunteers , Hemoglobins/analysis , Hemoglobins/metabolism , Humans , Male , Oxyhemoglobins/analysis , Oxyhemoglobins/metabolism , Prefrontal Cortex/blood supply , Spectroscopy, Near-Infrared , Young Adult
18.
Front Hum Neurosci ; 14: 65, 2020.
Article in English | MEDLINE | ID: mdl-32194386

ABSTRACT

Stochastic stimulation has been shown to improve movement, balance, the sense of touch, and may also improve position sense. This stimulation can be non-invasive and may be a simple technology to enhance proprioception. In this study, we investigated whether sub-threshold stochastic tactile stimulation of mechanoreceptors reduces age-related errors in wrist position estimation. Fifteen young (24.5±1.5y) and 23 elderly (71.7±7.3y) unimpaired, right-handed adults completed a wrist position gauge-matching experiment. In each trial, the participant's concealed wrist was moved to a target position between 10 and 30° of wrist flexion or extension by a robotic manipulandum. The participant then estimated the wrist's position on a virtual gauge. During half of the trials, sub-threshold stochastic tactile stimulation was applied to the wrist muscle tendon areas. Stochastic stimulation did not significantly influence wrist position sense. In the elderly group, estimation errors decreased non-significantly when stimulation was applied compared to the trials without stimulation [mean constant error reduction Δ µ ( θ c o n o f ) = 0 . 8 ° in flexion and Δ µ ( θ c o n o e ) = 0 . 7 ° in extension direction, p = 0.95]. This effect was less pronounced in the young group [ Δ µ ( θ c o n y ) = 0 . 2 ° in flexion and in extension direction, p = 0.99]. These improvements did not yield a relevant effect size (Cohen's d < 0.1). Estimation errors increased with target angle magnitude in both movement directions. In young participants, estimation errors were non-symmetric, with estimations in flexion [ µ ( θ c o n y f ) = 1 . 8 ° , σ ( θ c o n y f ) = 7 . 0 ° ] being significantly more accurate than in extension [ µ ( θ c o n y e ) = 8 . 3 ° , σ ( θ c o n y e ) = 9 . 3 ° , p < 0.01]. This asymmetry was not present in the elderly group, where estimations in flexion [ µ ( θ c o n o f ) = 7 . 5 ° , σ ( θ c o n o f ) = 9 . 8 ° ] were similar to extension [ µ ( θ c o n o e ) = 7 . 7 ° , σ ( θ c o n o e ) = 9 . 3 ° ]. Hence, young and elderly participants performed equally in extension direction, whereas wrist position sense in flexion direction deteriorated with age (p < 0.01). Though unimpaired elderly adults did not benefit from stochastic stimulation, it cannot be deduced that individuals with more severe impairments of their sensory system do not profit from this treatment. While the errors in estimating wrist position are symmetric in flexion and extension in elderly adults, young adults are more accurate when estimating wrist flexion, an effect that has not been described before.

19.
Ergonomics ; 63(5): 579-592, 2020 May.
Article in English | MEDLINE | ID: mdl-32009579

ABSTRACT

Occupational standing is associated with musculoskeletal and venous disorders. The aim was to investigate whether lower leg oedema and muscle fatigue development differ between standing and walking and whether age, gender and standing work habituation are factors to consider. Sixty participants (15 young females, 15 young males, 15 older males, and 15 young males habituated to standing work) were included and required to stand/walk for 4.5 hours in three periods with two seated breaks. Waterplethysmography/bioelectrical impedance, muscle twitch force and surface electromyography were used to assess lower leg swelling (LLS) and muscle fatigue as well as gastrocnemius muscle activity, respectively. While standing led to LLS and muscle fatigue, walking did not. Low-level medial gastrocnemius activity was not continuous during standing. No significant influence of age, gender and standing habituation was observed. Walking can be an effective prevention measure to counteract the detrimental effects of quasi-static standing.Practitioner summary: Prolonged standing leads to lower leg oedema and muscle fatigue while walking does not. The primary cause of fatigue may be in other muscles than the medial gastrocnemius. Walking may be an effective prevention measure for health risks of occupational standing when included intermittently.Abbreviation: BI: bioelectrical impedance; LLS: lower leg swelling; SEMG: surface electromyography; MTF: muscle twitch force; WP: waterplethysmography; Bsl: Baseline; L: Lunch; E: Evening; MTM: method times measurement; EA: electrical activity; IQR: interquartile range; p: percentile; M: mean; SE: standard error; Adj: adjusted.


Subject(s)
Edema/physiopathology , Muscle Fatigue , Occupational Diseases , Standing Position , Walking , Adolescent , Adult , Age Factors , Aged , Electric Impedance , Electromyography , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Sex Factors , Young Adult
20.
Proc Hum Factors Ergon Soc Annu Meet ; 64(1): 905-909, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33731982

ABSTRACT

Most existing ergonomic assessment tools are intended for routine work. Time- and cost-efficient observational tools for ergonomic assessment of unregulated work are lacking. This paper presents the development of an observation-based tool designed to investigate ergonomic exposures among informal electronic waste workers that could be applied to other unregulated jobs/tasks. Real time coding of observation is used to estimate the relative duration, intensity, and frequency of exposure to key work postures, forceful exertions, movements, contact stress and vibration. Time spent in manual material handling activities such as carrying, lifting and pushing/pulling of working carts are also estimated. A preliminary study conducted with 6 e-waste workers showed that the tool can easily be used with minimal training and good inter-observer agreement (i.e., 89% to 100%) for most risk factors assessed. This new assessment tool provides effective and flexible options for quantifying ergonomic exposures among workers engaged in unregulated, highly variable work.

SELECTION OF CITATIONS
SEARCH DETAIL
...