Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 10652, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26879809

ABSTRACT

Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H(+) antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects.


Subject(s)
Amphetamine/pharmacology , Brain/drug effects , Dopamine Agents/pharmacology , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Locomotion/drug effects , Synaptic Vesicles/drug effects , Vesicular Monoamine Transport Proteins/antagonists & inhibitors , Animals , Animals, Genetically Modified , Brain/metabolism , Cocaine/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Drosophila melanogaster , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Methamphetamine/pharmacology , Methylphenidate/pharmacology , Optical Imaging , Rats , Vesicular Monoamine Transport Proteins/drug effects , Vesicular Monoamine Transport Proteins/metabolism
2.
Exp Neurol ; 275 Pt 1: 232-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26439313

ABSTRACT

Multiple populations of aminergic neurons are affected in Parkinson's disease (PD), with serotonergic and noradrenergic loci responsible for some non-motor symptoms. Environmental toxins, such as the dithiocarbamate fungicide ziram, significantly increase the risk of developing PD and the attendant spectrum of both motor and non-motor symptoms. The mechanisms by which ziram and other environmental toxins increase the risk of PD, and the potential effects of these toxins on aminergic neurons, remain unclear. To determine the relative effects of ziram on the synaptic function of aminergic versus non-aminergic neurons, we used live-imaging at the Drosophila melanogaster larval neuromuscular junction (NMJ). In contrast to nearly all other studies of this model synapse, we imaged presynaptic function at both glutamatergic Type Ib and aminergic Type II boutons, the latter responsible for storage and release of octopamine, the invertebrate equivalent of noradrenalin. To quantify the kinetics of exo- and endo-cytosis, we employed an acid-sensitive form of GFP fused to the Drosophila vesicular monoamine transporter (DVMAT-pHluorin). Additional genetic probes were used to visualize intracellular calcium flux (GCaMP) and voltage changes (ArcLight). We find that at glutamatergic Type Ib terminals, exposure to ziram increases exocytosis and inhibits endocytosis. By contrast, at octopaminergic Type II terminals, ziram has no detectable effect on exocytosis and dramatically inhibits endocytosis. In contrast to other reports on the neuronal effects of ziram, these effects do not appear to result from perturbation of the Ubiquitin Proteasome System (UPS) or calcium homeostasis. Unexpectedly, ziram also caused spontaneous and synchronized bursts of calcium influx (measured by GCaMP) and electrical activity (measured by ArcLight) at aminergic Type II, but not glutamatergic Type Ib, nerve terminals. These events are sensitive to both tetrodotoxin and cadmium chloride, and thus appear to represent spontaneous depolarizations followed by calcium influx into Type II terminals. We speculate that the differential effects of ziram on Type II versus Type Ib terminals may be relevant to the specific sensitivity of aminergic neurons in PD, and suggest that changes in neuronal excitability could contribute to the increased risk for PD caused by exposure to ziram. We also suggest that the fly NMJ will be useful to explore the synaptic effects of other pesticides associated with an increased risk of PD.


Subject(s)
Dopamine/metabolism , Fungicides, Industrial/pharmacology , Glutamic Acid/metabolism , Neuromuscular Junction/drug effects , Presynaptic Terminals/drug effects , Ziram/pharmacology , Animals , Drosophila melanogaster , Endocytosis/drug effects , Exocytosis/drug effects , Neuromuscular Junction/metabolism , Parkinson Disease , Presynaptic Terminals/metabolism
3.
Neurotoxicology ; 44: 344-51, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25160001

ABSTRACT

The neurodegenerative effects of Parkinson's disease (PD) are marked by a selective loss of dopaminergic (DA) neurons. Epidemiological studies suggest that chronic exposure to the pesticide paraquat may increase the risk for PD and DA cell loss. However, combined exposure with additional fungicide(s) including maneb and/or ziram may be required for pathogenesis. To explore potential pathogenic mechanisms, we have developed a Drosophila model of chronic paraquat exposure. We find that while chronic paraquat exposure alone decreased organismal survival and motor function, combined chronic exposure to both paraquat and maneb was required for DA cell death in the fly. To initiate mechanistic studies of this interaction, we used additional genetic reagents to target the ubiquitin proteasome system, which has been implicated in some rare familial forms of PD and the toxic effects of ziram. Genetic inhibition of E1 ubiquitin ligase, but not the proteasome itself, increased DA cell death in combination with maneb but not paraquat. These studies establish a model for long-term exposure to multiple pesticides, and support the idea that pesticide interactions relevant to PD may involve inhibition of protein ubiquitination.


Subject(s)
Dopaminergic Neurons/drug effects , Maneb/toxicity , Paraquat/toxicity , Pesticides/toxicity , Ziram/toxicity , Animals , Cell Death/drug effects , Disease Models, Animal , Dopaminergic Neurons/metabolism , Drosophila melanogaster , Motor Activity/drug effects , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Survival Analysis , Ubiquitin-Protein Ligases/metabolism
4.
J Neurosci ; 34(20): 6924-37, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24828646

ABSTRACT

Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.


Subject(s)
Behavior, Animal/physiology , Drosophila Proteins/metabolism , Secretory Vesicles/metabolism , Synaptic Vesicles/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Vesicular Monoamine Transport Proteins/genetics
5.
Neurochem Int ; 73: 71-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24704795

ABSTRACT

The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Neurotransmitter Transport Proteins/genetics , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Drosophila Proteins/metabolism , Humans , Neurotransmitter Transport Proteins/drug effects , Neurotransmitter Transport Proteins/metabolism , Vesicular Neurotransmitter Transport Proteins/genetics , Vesicular Neurotransmitter Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...