Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 19(3): 847-857, 2020 03.
Article in English | MEDLINE | ID: mdl-31911531

ABSTRACT

The fibroblast growth factor receptor (FGFR) signaling pathway is aberrantly activated in approximately 15% to 20% of patients with intrahepatic cholangiocarcinoma. Currently, several FGFR kinase inhibitors are being assessed in clinical trials for patients with FGFR-altered cholangiocarcinoma. Despite evidence of initial responses and disease control, virtually all patients eventually develop acquired resistance. Thus, there is a critical need for the development of innovative therapeutic strategies to overcome acquired drug resistance. Here, we present findings from a patient with FGFR2-altered metastatic cholangiocarcinoma who enrolled in a phase II clinical trial of the FGFR inhibitor, infigratinib (BGJ398). Treatment was initially effective as demonstrated by imaging and tumor marker response; however, after 8 months on trial, the patient exhibited tumor regrowth and disease progression. Targeted sequencing of tumor DNA after disease progression revealed the FGFR2 kinase domain p.E565A and p.L617M single-nucleotide variants (SNV) hypothesized to drive acquired resistance to infigratinib. The sensitivities of these FGFR2 SNVs, which were detected post-infigratinib therapy, were extended to include clinically relevant FGFR inhibitors, including AZD4547, erdafitinib (JNJ-42756493), dovitinib, ponatinib, and TAS120, and were evaluated in vitro Through a proteomics approach, we identified upregulation of the PI3K/AKT/mTOR signaling pathway in cells harboring the FGFR2 p.E565A mutation and demonstrated that combination therapy strategies with FGFR and mTOR inhibitors may be used to overcome resistance to FGFR inhibition, specific to infigratinib. Collectively, these studies support the development of novel combination therapeutic strategies in addition to the next generation of FGFR inhibitors to overcome acquired resistance in patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bile Duct Neoplasms/drug therapy , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/drug therapy , Drug Resistance, Neoplasm , Oncogene Proteins, Fusion/genetics , Phenylurea Compounds/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Apoptosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Biomarkers, Tumor/genetics , Cell Proliferation , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Mutation , Prognosis , Receptor, Fibroblast Growth Factor, Type 2/genetics , Signal Transduction , Tumor Cells, Cultured
2.
Article in English | MEDLINE | ID: mdl-31371345

ABSTRACT

Cholangiocarcinoma is a highly aggressive and lethal malignancy, with limited treatment options available. Recently, FGFR inhibitors have been developed and utilized in FGFR-mutant cholangiocarcinoma; however, resistance often develops and the genomic determinants of resistance are not fully characterized. We completed whole-exome sequencing (WES) of 11 unique tumor samples obtained from a rapid research autopsy on a patient with FGFR-fusion-positive cholangiocarcinoma who initially responded to the pan-FGFR inhibitor, INCB054828. In vitro studies were carried out to characterize the novel FGFR alteration and secondary FGFR2 mutation identified. Multisite WES and analysis of tumor heterogeneity through subclonal inference identified four genetically distinct cancer cell populations, two of which were only observed after treatment. Additionally, WES revealed an FGFR2 N549H mutation hypothesized to confer resistance to the FGFR inhibitor INCB054828 in a single tumor sample. This hypothesis was corroborated with in vitro cell-based studies in which cells expressing FGFR2-CLIP1 fusion were sensitive to INCB054828 (IC50 value of 10.16 nM), whereas cells with the addition of the N549H mutation were resistant to INCB054828 (IC50 value of 1527.57 nM). Furthermore, the FGFR2 N549H secondary mutation displayed cross-resistance to other selective FGFR inhibitors, but remained sensitive to the nonselective inhibitor, ponatinib. Rapid research autopsy has the potential to provide unprecedented insights into the clonal evolution of cancer throughout the course of the disease. In this study, we demonstrate the emergence of a drug resistance mutation and characterize the evolution of tumor subclones within a cholangiocarcinoma disease course.


Subject(s)
Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Autopsy , Cell Line, Tumor , Clonal Evolution/genetics , Drug Resistance, Neoplasm/genetics , Humans , Male , Middle Aged , Morpholines/pharmacology , Morpholines/therapeutic use , Mutation/genetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Exome Sequencing
3.
Prostate Cancer Prostatic Dis ; 22(4): 624-632, 2019 12.
Article in English | MEDLINE | ID: mdl-31043681

ABSTRACT

BACKGROUND: The fibroblast growth factor receptor (FGFR) signaling pathway is activated in multiple tumor types through gene amplifications, single base substitutions, or gene fusions. Multiple small molecule kinase inhibitors targeting FGFR are currently being evaluated in clinical trials for patients with FGFR chromosomal translocations. Patients with novel gene fusions involving FGFR may represent candidates for kinase inhibitors. METHODS: A targeted RNA-sequencing assay identified a KLK2-FGFR2 fusion gene in two patients with metastatic prostate cancer. NIH3T3 cells were transduced to express the KLK2-FGFR2 fusion. Migration assays, Western blots, and drug sensitivity assays were performed to functionally characterize the fusion. RESULTS: Expression of the KLK2-FGFR2 fusion protein in NIH3T3 cells induced a profound morphological change promoting enhanced migration and activation of downstream proteins in FGFR signaling pathways. The KLK2-FGFR2 fusion protein was determined to be highly sensitive to the selective FGFR inhibitors AZD-4547, BGJ398, JNJ-42756943, the irreversible inhibitor TAS-120, and the non-selective inhibitor Ponatinib. The KLK2-FGFR2 fusion did not exhibit sensitivity to the non-selective inhibitor Dovitinib. CONCLUSIONS: Importantly, the KLK2-FGFR2 fusion represents a novel target for precision therapies and should be screened for in men with prostate cancer.


Subject(s)
Kallikreins/genetics , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Carcinogenesis/genetics , Cell Movement/genetics , HEK293 Cells , Humans , Kallikreins/antagonists & inhibitors , Kallikreins/metabolism , Male , Mice , Middle Aged , Molecular Targeted Therapy/methods , NIH 3T3 Cells , Precision Medicine/methods , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis, RNA , Transfection
4.
Oncotarget ; 10(3): 277-288, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30719225

ABSTRACT

Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare cancer of dendritic cell origin that lacks a standardized treatment approach. Here, we performed genomic characterization of metastatic IDCS through whole exome sequencing (WES) of tumor tissues procured from a patient who underwent research autopsy. WES was also performed on a treatment-naïve tumor biopsy sample obtained from prior surgical resection. Our analyses revealed ultra-hypermutation, defined as >100 mutations per megabase, in this patient's cancer, which was further characterized by the presence of three distinct mutational signatures including UV radiation and APOBEC signatures. To characterize clonal heterogeneity, we used the bioinformatics tool Canopy to leverage single nucleotide and copy number variants to catalog six subclones across various metastatic tumors. Truncal alterations, defined as being present in all clonal tumor cell populations, in this patient's cancer include point mutations in TP53 and CDKN2A and amplifications of c-KIT and APOBEC3A-H, which are likely driver mutations. In summary, we have performed genomic characterization evaluating tumor mutational burden (TMB) and heterogeneity in a patient with metastatic IDCS. Despite ultra-hypermutation, this patient's cancer was not responsive to treatment with PD-1 inhibition. Our results underscore the importance of characterizing clonal heterogeneity in TMB-high cancers.

5.
Oncotarget ; 8(44): 75822-75833, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100271

ABSTRACT

Multiplex somatic testing has emerged as a strategy to test patients with advanced cancer. We demonstrate our analytic validation approach for a gene hotspot panel and real-time prospective clinical application for any cancer type. The TruSight Tumor 26 assay amplifies 85 somatic hotspot regions across 26 genes. Using cell line and tumor mixes, we observed that 100% of the 14,715 targeted bases had at least 1000x raw coverage. We determined the sensitivity (100%, 95% CI: 96-100%), positive predictive value (100%, 95% CI: 96-100%), reproducibility (100% concordance), and limit of detection (3% variant allele frequency at 1000x read depth) of this assay to detect single nucleotide variants and small insertions and deletions. Next, we applied the assay prospectively in a clinical tumor sequencing study to evaluate 174 patients with metastatic or advanced cancer, including frozen tumors, formalin-fixed tumors, and enriched peripheral blood mononuclear cells in hematologic cancers. We reported one or more somatic mutations in 89 (53%) of the sequenced tumors (167 passing quality filters). Forty-three of these patients (26%) had mutations that would enable eligibility for targeted therapies. This study demonstrates the validity and feasibility of applying TruSight Tumor 26 for pan-cancer testing using multiple specimen types.

6.
J Mol Diagn ; 19(5): 682-696, 2017 09.
Article in English | MEDLINE | ID: mdl-28802831

ABSTRACT

Kinase gene fusions are important drivers of oncogenic transformation and can be inhibited with targeted therapies. Clinical grade diagnostics using RNA sequencing to detect gene rearrangements in solid tumors are limited, and the few that are available require prior knowledge of fusion break points. To address this, we have analytically validated a targeted RNA sequencing assay (OSU-SpARKFuse) for fusion detection that interrogates complete transcripts from 93 kinase and transcription factor genes. From a total of 74 positive and 36 negative control samples, OSU-SpARKFuse had 93.3% sensitivity and 100% specificity for fusion detection. Assessment of repeatability and reproducibility revealed 96.3% and 94.4% concordance between intrarun and interrun technical replicates, respectively. Application of this assay on prospective patient samples uncovered OLFM4 as a novel RET fusion partner in a small-bowel cancer and led to the discovery of a KLK2-FGFR2 fusion in a patient with prostate cancer who subsequently underwent treatment with a pan-fibroblast growth factor receptor inhibitor. Beyond fusion detection, OSU-SpARKFuse has built-in capabilities for discovery research, including gene expression analysis, detection of single-nucleotide variants, and identification of alternative splicing events.


Subject(s)
Biomarkers, Tumor , Neoplasms/diagnosis , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Protein Kinases/genetics , Sequence Analysis, RNA/methods , Sequence Analysis, RNA/standards , Alternative Splicing , Cell Line, Tumor , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-ret/genetics , Quality Control , Receptor, Fibroblast Growth Factor, Type 2/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Sequence Analysis, DNA , Workflow
7.
J Vis Exp ; (114)2016 08 04.
Article in English | MEDLINE | ID: mdl-27585245

ABSTRACT

RNA sequencing (RNAseq) is a versatile method that can be utilized to detect and characterize gene expression, mutations, gene fusions, and noncoding RNAs. Standard RNAseq requires 30 - 100 million sequencing reads and can include multiple RNA products such as mRNA and noncoding RNAs. We demonstrate how targeted RNAseq (capture) permits a focused study on selected RNA products using a desktop sequencer. RNAseq capture can characterize unannotated, low, or transiently expressed transcripts that may otherwise be missed using traditional RNAseq methods. Here we describe the extraction of RNA from cell lines, ribosomal RNA depletion, cDNA synthesis, preparation of barcoded libraries, hybridization and capture of targeted transcripts and multiplex sequencing on a desktop sequencer. We also outline the computational analysis pipeline, which includes quality control assessment, alignment, fusion detection, gene expression quantification and identification of single nucleotide variants. This assay allows for targeted transcript sequencing to characterize gene expression, gene fusions, and mutations.


Subject(s)
Sequence Analysis, RNA/methods , Base Sequence , Gene Expression Profiling/methods , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , RNA/analysis , RNA/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Ribosomal/analysis , RNA, Ribosomal/genetics
8.
Mol Biol Evol ; 33(6): 1419-34, 2016 06.
Article in English | MEDLINE | ID: mdl-26861137

ABSTRACT

Hydrogen sulfide (H2S) is a potent toxicant interfering with oxidative phosphorylation in mitochondria and creating extreme environmental conditions in aquatic ecosystems. The mechanistic basis of adaptation to perpetual exposure to H2S remains poorly understood. We investigated evolutionarily independent lineages of livebearing fishes that have colonized and adapted to springs rich in H2S and compared their genome-wide gene expression patterns with closely related lineages from adjacent, nonsulfidic streams. Significant differences in gene expression were uncovered between all sulfidic and nonsulfidic population pairs. Variation in the number of differentially expressed genes among population pairs corresponded to differences in divergence times and rates of gene flow, which is consistent with neutral drift driving a substantial portion of gene expression variation among populations. Accordingly, there was little evidence for convergent evolution shaping large-scale gene expression patterns among independent sulfide spring populations. Nonetheless, we identified a small number of genes that was consistently differentially expressed in the same direction in all sulfidic and nonsulfidic population pairs. Functional annotation of shared differentially expressed genes indicated upregulation of genes associated with enzymatic H2S detoxification and transport of oxidized sulfur species, oxidative phosphorylation, energy metabolism, and pathways involved in responses to oxidative stress. Overall, our results suggest that modification of processes associated with H2S detoxification and toxicity likely complement each other to mediate elevated H2S tolerance in sulfide spring fishes. Our analyses allow for the development of novel hypotheses about biochemical and physiological mechanisms of adaptation to extreme environments.


Subject(s)
Adaptation, Physiological/physiology , Hydrogen Sulfide/metabolism , Poecilia/physiology , Acclimatization/genetics , Acclimatization/physiology , Adaptation, Physiological/genetics , Animals , Biological Evolution , Ecosystem , Environment , Evolution, Molecular , Gene Flow , Genetics, Population/methods , Genome , Poecilia/genetics , Poecilia/metabolism , Selection, Genetic , Sequence Alignment/methods , Sequence Analysis, RNA/methods , Transcriptome
9.
PLoS One ; 9(1): e86790, 2014.
Article in English | MEDLINE | ID: mdl-24497979

ABSTRACT

Signal transducer and activator of transcription (STAT) comprises a family of universal transcription factors that help cells sense and respond to environmental signals. STAT5 refers to two highly related proteins, STAT5A and STAT5B, with critical function: their complete deficiency is lethal in mice; in humans, STAT5B deficiency alone leads to endocrine and immunological problems, while STAT5A deficiency has not been reported. STAT5A and STAT5B show peptide sequence similarities greater than 90%, but subtle structural differences suggest possible non-redundant roles in gene regulation. However, these roles remain unclear in humans. We applied chromatin immunoprecipitation followed by DNA sequencing using human CD4(+) T cells to detect candidate genes regulated by STAT5A and/or STAT5B, and quantitative-PCR in STAT5A or STAT5B knock-down (KD) human CD4(+) T cells to validate the findings. Our data show STAT5A and STAT5B play redundant roles in cell proliferation and apoptosis via SGK1 interaction. Interestingly, we found a novel, unique role for STAT5A in binding to genes involved in neural development and function (NDRG1, DNAJC6, and SSH2), while STAT5B appears to play a distinct role in T cell development and function via DOCK8, SNX9, FOXP3 and IL2RA binding. Our results also suggest that one or more co-activators for STAT5A and/or STAT5B may play important roles in establishing different binding abilities and gene regulation behaviors. The new identification of these genes regulated by STAT5A and/or STAT5B has major implications for understanding the pathophysiology of cancer progression, neural disorders, and immune abnormalities.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , STAT5 Transcription Factor/physiology , Tumor Suppressor Proteins/physiology , Active Transport, Cell Nucleus , Base Sequence , Binding Sites , Cells, Cultured , Consensus Sequence , Humans , Protein Multimerization , Transcriptional Activation , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...