Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Seismica ; 3(2)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39351191

ABSTRACT

In the past decade, distributed acoustic sensing (DAS) has enabled many new monitoring applications in diverse fields including hydrocarbon exploration and extraction; induced, local, regional, and global seismology; infrastructure and urban monitoring; and several others. However, to date, the open-source software ecosystem for handling DAS data is relatively immature. Here we introduce DASCore, a Python library for analyzing, visualizing, and managing DAS data. DASCore implements an object-oriented interface for performing common data processing and transformations, reading and writing various DAS file types, creating simple visualizations, and managing file system-based DAS archives. DASCore also integrates with other Python-based tools which enable the processing of massive data sets in cloud environments. DASCore is the foundational package for the broader DAS data analysis ecosystem (DASDAE), and as such its main goal is to facilitate the development of other DAS libraries and applications.

2.
Sci Rep ; 7(1): 11620, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912436

ABSTRACT

Ambient-noise-based seismic monitoring of the near surface often has limited spatiotemporal resolutions because dense seismic arrays are rarely sufficiently affordable for such applications. In recent years, however, distributed acoustic sensing (DAS) techniques have emerged to transform telecommunication fiber-optic cables into dense seismic arrays that are cost effective. With DAS enabling both high sensor counts ("large N") and long-term operations ("large T"), time-lapse imaging of shear-wave velocity (V S ) structures is now possible by combining ambient noise interferometry and multichannel analysis of surface waves (MASW). Here we report the first end-to-end study of time-lapse V S imaging that uses traffic noise continuously recorded on linear DAS arrays over a three-week period. Our results illustrate that for the top 20 meters the V S models that is well constrained by the data, we obtain time-lapse repeatability of about 2% in the model domain-a threshold that is low enough for observing subtle near-surface changes such as water content variations and permafrost alteration. This study demonstrates the efficacy of near-surface seismic monitoring using DAS-recorded ambient noise.

SELECTION OF CITATIONS
SEARCH DETAIL