Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Food Chem ; 331: 127303, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32562979

ABSTRACT

ß-phenylethylamine and tryptamine are biogenic amines (BA) often found in foods. In general, BA are assumed to be toxic and their accumulation in food is not recommended. However, present knowledge regarding the toxicity of ß-phenylethylamine and tryptamine is limited; more information is needed if qualitative and quantitative risk assessments of foods are to be successfully conducted. This study describes a real-time analysis of ß-phenylethylamine and tryptamine toxicity on a human intestinal epithelial cell line. Both BA caused cell necrosis and apoptosis, although the former was the main mode of action of ß-phenylethylamine, and the latter the main mode of action of tryptamine. Only tryptamine was cytotoxic at concentrations found in BA-rich foods. The results presented in this work may contribute to establish legal limits for ß-phenylethylamine and tryptamine in food.


Subject(s)
Cytotoxins/toxicity , Food/adverse effects , Tryptamines/toxicity , Apoptosis/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Intestinal Mucosa/cytology , Legislation, Food , Phenethylamines/toxicity , Risk Assessment
2.
Sci Rep ; 9(1): 16881, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727936

ABSTRACT

Enterococcus faecalis is a lactic acid bacterium characterized by its tolerance of very diverse environmental conditions, a property that allows it to colonize many different habitats. This species can be found in food products, especially in fermented foods where it plays an important role as a biopreservative and influences the development of organoleptic characteristics. However, E. faecalis also produces the biogenic amines tyramine and putrescine. The consumption of food with high concentrations of these compounds can cause health problems. The present work reports the construction, via homologous recombination, of a double mutant of E. faecalis in which the clusters involved in tyramine and putrescine synthesis (which are located in different regions of the chromosome) are no longer present. Analyses showed the double mutant to grow and adhere to intestinal cells normally, and that the elimination of genes involved in the production of tyramine and putrescine has no effect on the expression of other genes.


Subject(s)
Biofilms/growth & development , Enterococcus faecalis/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Multigene Family , Bacterial Adhesion , Caco-2 Cells , Chromosomes, Bacterial/chemistry , Enterococcus faecalis/growth & development , Enterococcus faecalis/metabolism , Food Microbiology , Genetic Engineering/methods , Homologous Recombination , Humans , Hydrogen-Ion Concentration , Putrescine/biosynthesis , Transcriptome , Tyramine/biosynthesis
3.
Sci Rep ; 9(1): 120, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644398

ABSTRACT

Putrescine and cadaverine are among the most common biogenic amines (BA) in foods, but it is advisable that their accumulation be avoided. Present knowledge about their toxicity is, however, limited; further research is needed if qualitative and quantitative risk assessments for foods are to be conducted. The present work describes a real-time analysis of the cytotoxicity of putrescine and cadaverine on intestinal cell cultures. Both BA were cytotoxic at concentrations found in BA-rich foods, although the cytotoxicity threshold for cadaverine was twice that of putrescine. Their mode of cytotoxic action was similar, with both BA causing cell necrosis; they did not induce apoptosis. The present results may help in establishing legal limits for both putrescine and cadaverine in food.


Subject(s)
Biogenic Amines/analysis , Cadaverine/analysis , Food Analysis/standards , Putrescine/analysis , Apoptosis/drug effects , Biogenic Amines/toxicity , Cadaverine/toxicity , Cells, Cultured , Cytotoxins/analysis , Cytotoxins/pharmacology , HT29 Cells , Humans , Intestines/cytology , Intestines/drug effects , Necrosis/chemically induced , Putrescine/toxicity
4.
Food Chem ; 269: 321-326, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30100441

ABSTRACT

Spermine and spermidine are polyamines (PA) naturally present in all organisms, in which they have important physiological functions. However, an excess of PA has been associated with health risks. PA accumulates at quite high concentrations in some foods, but a quantitative assessment of the risk they pose has been lacking. In the present work, the cytotoxicity of spermine and spermidine was evaluated using an in vitro human intestinal cell model, and employing real-time cell analysis. Both spermine and spermidine showed a dose-dependent cytotoxic effect towards the cultured cells, with necrosis the mode of action of spermidine and perhaps also that of spermine. Spermine was more cytotoxic than spermidine, but for both PA the concentrations found to be toxic were above the maximum at which they have been found in food. The present results do not, therefore, support the idea that spermine or spermidine in food is harmful to healthy people.


Subject(s)
Spermidine/toxicity , Spermine/toxicity , Cells, Cultured , Dose-Response Relationship, Drug , Food Analysis , Humans , Intestines , Polyamines , Putrescine
5.
Front Microbiol ; 8: 2107, 2017.
Article in English | MEDLINE | ID: mdl-29163401

ABSTRACT

Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC) route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI) pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes) was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi) was implicated in interaction among the two clusters.

6.
Data Brief ; 9: 398-400, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27689128

ABSTRACT

A novel chromatographic method for the simultaneous analysis of nine biogenic amines, 21 amino acids and ammonium ions in beer has been recently described in "A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer" (Redruello et al., 2017) [1]. The present article provides recovery data of the 31 analytes after spiking four different beers with five concentrations of each analyte (15, 30, 60, 120 and 240 µM).

7.
PLoS One ; 11(9): e0162426, 2016.
Article in English | MEDLINE | ID: mdl-27584695

ABSTRACT

Biogenic amines (BAs) are low molecular weight nitrogenous organic compounds with different biological activities. Putrescine, spermidine and spermine are essential for the development of the gut and immune system of newborns, and are all found in human milk. Little is known, however, about the role of histamine, tyramine or cadaverine in breast milk. Nor is it known whether mastitis alters the BA composition of milk. The BA profile of human milk, and the influence of mastitis on BA concentrations, were therefore investigated. Putrescine, spermidine and spermine were the main BAs detected. In mastitis-affected milk, the concentrations of putrescine, spermine and histamine were higher.


Subject(s)
Histamine/administration & dosage , Milk , Putrescine/administration & dosage , Animals , Humans
8.
Genom Data ; 9: 67-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27408815

ABSTRACT

The species Enterococcus faecalis is able to catabolise the amino acid tyrosine into the biogenic amine tyramine by the tyrosine decarboxilase (TDC) pathway Ladero et al. (2012) [1]. The TDC cluster comprises four genes: tyrS, an aminoacyl-tRNA synthetase-like gene; tdcA, which encodes the tyrosine decarboxylase; tyrP, a tyrosine/tyramine exchanger gene and nhaC-2, which encodes an Na(+)/H(+) antiporter and whose role in the tyramine biosynthesis remains unknown [2]. In E. faecalis V583 the last three genes are co-transcribed as a single polycistronic mRNA forming the catabolic operon, while tyrS is transcribed independently of the catabolic genes as a monocistronic mRNA [2]. The catabolic operon is transcriptionally induced by tyrosine and acidic pH. On the opposite, the tyrS expression is repressed by tyrosine concentrations [2]. In this work we report the transcriptional profiling of the TDC cluster deletion mutant (E. faecalis V583 ΔTDC) [2] compared to the wild-type strain, both grown in M17 medium supplemented with tyrosine. The transcriptional profile data of TDC cluster-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under accession no. GSE77864.

9.
Food Microbiol ; 59: 85-91, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27375247

ABSTRACT

The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses.


Subject(s)
Biofilms/growth & development , Cheese/microbiology , Food Microbiology , Histamine/biosynthesis , Lactobacillus/isolation & purification , Lactobacillus/physiology , Stainless Steel , Cheese/analysis , Electrophoresis, Gel, Pulsed-Field , Food Contamination/prevention & control , Food Handling , Histidine Decarboxylase/genetics , Lactobacillus/genetics , Lactobacillus/metabolism , Polymerase Chain Reaction , Polystyrenes
10.
Front Microbiol ; 7: 591, 2016.
Article in English | MEDLINE | ID: mdl-27242675

ABSTRACT

Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria-both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis-were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

11.
Front Microbiol ; 7: 445, 2016.
Article in English | MEDLINE | ID: mdl-27092117

ABSTRACT

Biogenic amines (BAs) are low molecular weight nitrogenous compounds with biological activity, formed from amino acids by decarboxylation. BAs are naturally present in all living organisms playing essential roles. However, their accumulation in food through the metabolic activity of certain microorganisms constitutes a toxicological hazard. Among foods, cheeses accumulate some of the highest concentrations of BAs since they provide an ideal environment for their accumulation. Most of the methods proposed for reducing BAs in cheese, such as milk pasteurization, have not only failed to completely solve the problem, they also affect non-BA producing lactic acid bacteria, i.e., the bacteria that participate in the development of the organoleptic characteristics of cheese. Novel technologies specifically targeted against BA producers are therefore needed to control BA accumulation. Bacteriophages have been proposed as agents for specifically controlling the presence of foodborne pathogens in food. Due to its specificity, they could be used as a biotechnological tool targeted to reduce the population of BA-producing bacteria. The present work reports the isolation, from cheese, and the characterization of bacteriophage Q69, which infects specifically Enterococcus faecalis, the species mainly responsible of the accumulation of the BA tyramine in foods. Furthermore, its capacity to reduce the accumulation of tyramine in different conditions -including a model cheese- was proven. The obtained results open up the possibility of use bacteriophages to prevent BA accumulation in fermented foods.

12.
Genom Data ; 7: 112-4, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26981381

ABSTRACT

The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808.

13.
Food Chem ; 197(Pt A): 658-63, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26617000

ABSTRACT

Tyramine and histamine, the most toxic biogenic amines (BA), are often found in high concentrations in certain foods. Prompted by the limited knowledge of BA toxicity, and increasing awareness of the risks associated with high intakes of dietary BA, the in vitro cytotoxicity of tyramine and histamine was investigated. Tyramine and histamine were toxic for HT29 intestinal cell cultures at concentrations commonly found in BA-rich food, as determined by real-time cell analysis. Surprisingly, tyramine had a stronger and more rapid cytotoxic effect than histamine. Their mode of action was also different, while tyramine caused cell necrosis, histamine induced apoptosis. To avoid health risks, the BA content of foods should be reduced and legal limits established for tyramine.


Subject(s)
Biogenic Amines/toxicity , Histamine/toxicity , Tyramine/toxicity , Apoptosis/drug effects , Biogenic Amines/analysis , DNA Fragmentation , Food Analysis , HT29 Cells , Histamine/analysis , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , No-Observed-Adverse-Effect Level , Tyramine/analysis
14.
Genome Announc ; 3(3)2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26089428

ABSTRACT

We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain-isolated from a traditional cheese-produces putrescine, one of the most frequently biogenic amines found in dairy products.

15.
Appl Environ Microbiol ; 81(18): 6145-57, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26116671

ABSTRACT

Dairy industry fermentative processes mostly use Lactococcus lactis as a starter. However, some dairy L. lactis strains produce putrescine, a biogenic amine that raises food safety and spoilage concerns, via the agmatine deiminase (AGDI) pathway. The enzymatic activities responsible for putrescine biosynthesis in this bacterium are encoded by the AGDI gene cluster. The role of the catabolic genes aguB, aguD, aguA, and aguC has been studied, but knowledge regarding the role of aguR (the first gene in the cluster) remains limited. In the present work, aguR was found to be a very low level constitutively expressed gene that is essential for putrescine biosynthesis and is transcribed independently of the polycistronic mRNA encoding the catabolic genes (aguBDAC). In response to agmatine, AguR acts as a transcriptional activator of the aguB promoter (PaguB), which drives the transcription of the aguBDAC operon. Inverted sequences required for PaguB activity were identified by deletion analysis. Further work indicated that AguR is a transmembrane protein which might function as a one-component signal transduction system that senses the agmatine concentration of the medium and, accordingly, regulates the transcription of the aguBDAC operon through a C-terminal cytoplasmic DNA-binding domain typically found in LuxR-like proteins.


Subject(s)
Agmatine/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic , Biosynthetic Pathways/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Operon , Putrescine/biosynthesis
16.
Appl Environ Microbiol ; 81(17): 5784-93, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26092449

ABSTRACT

Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.


Subject(s)
Bacterial Proteins/metabolism , Immunoglobulin Fragments/metabolism , Lacticaseibacillus rhamnosus/metabolism , Polysaccharides, Bacterial/deficiency , Rotavirus Infections/microbiology , Rotavirus/physiology , Animals , Bacterial Proteins/genetics , Disease Models, Animal , Female , Humans , Immunoglobulin Fragments/genetics , Lacticaseibacillus rhamnosus/genetics , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Probiotics/administration & dosage , Rotavirus Infections/prevention & control , Rotavirus Infections/virology
17.
Food Chem ; 168: 439-44, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25172732

ABSTRACT

For patients with celiac disease, gliadin detoxification via the use of gliadinases may provide an alternative to a gluten-free diet. A culture medium, in which gliadins were the sole source of nitrogen, was developed for screening for microorganisms with gliadinase activity. The problem of gliadin insolubility was solved by mild acid treatment, which renders an acid-hydrolysed gliadin/peptide mixture (AHG). This medium provided a sensitive and reliable means of detecting proteases, compared to the classical spectrophotometric method involving azocasein. When a sample of fermented wheat (a source of bacteria) was plated on an AHG-based culture medium, strains with gliadinase activity were isolated. These strains' gliadinase profiles were determined using an AHG-based substrate in zymographic analyses.


Subject(s)
Bacteria/enzymology , Gliadin/chemistry , Nitrogen/metabolism , Peptide Hydrolases/metabolism , Hydrolysis , Solubility
18.
Plasmid ; 77: 28-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25479060

ABSTRACT

A chimeric plasmid, pRS7Rep (6.1 kb), was constructed using the replication region of pRS7, a large plasmid from Oenococcus oeni, and pEM64, a plasmid derived from pIJ2925 and containing a gene for resistance to chloramphenicol. pRS7Rep is a shuttle vector that replicates in Escherichia coli using its pIJ2925 component and in lactic acid bacteria (LAB) using the replication region of pRS7. High levels of transformants per µg of DNA were obtained by electroporation of pRS7Rep into Pediococcus acidilactici (1.5 × 10(7)), Lactobacillus plantarum (5.7 × 10(5)), Lactobacillus casei (2.3 × 10(5)), Leuconostoc citreum (2.7 × 10(5)), and Enterococcus faecalis (2.4 × 10(5)). A preliminary optimisation of the technical conditions of electrotransformation showed that P. acidilactici and L. plantarum are better transformed at a later exponential phase of growth, whereas L. casei requires the early exponential phase for better electrotransformation efficiency. pRS7Rep contains single restriction sites useful for cloning purposes, BamHI, XbaI, SalI, HincII, SphI and PstI, and was maintained at an acceptable rate (>50%) over 100 generations without selective pressure in L. plantarum, but was less stable in L. casei and P. acidilactici. The ability of pRS7Rep to accept and express other genes was assessed. To the best of our knowledge, this is the first time that the replication region of a plasmid from O. oeni has been used to generate a cloning vector.


Subject(s)
DNA Replication/genetics , Genetic Vectors/genetics , Lactobacillaceae/genetics , Oenococcus/genetics , Plasmids/genetics , Chromosome Mapping , Electroporation , Transformation, Bacterial
19.
Microb Cell Fact ; 13: 169, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471381

ABSTRACT

BACKGROUND: Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. RESULTS: This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. CONCLUSION: pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.


Subject(s)
Agmatine/pharmacology , Enterococcus faecalis , Gene Expression/drug effects , Genetic Vectors , Green Fluorescent Proteins , Promoter Regions, Genetic , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
20.
Genome Announc ; 2(5)2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25342694

ABSTRACT

We here report a 2,801,031-bp annotated draft assembly for the Lactococcus lactis subsp. cremoris GE2-14 genome. This dairy strain produces the biogenic amine putrescine. This sequence may help identify the mechanisms regulating putrescine biosynthesis and throw light on ways to reduce its presence in fermented foods.

SELECTION OF CITATIONS
SEARCH DETAIL
...