Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Anim Microbiome ; 6(1): 38, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951941

ABSTRACT

To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.

2.
Front Immunol ; 15: 1412821, 2024.
Article in English | MEDLINE | ID: mdl-39015564

ABSTRACT

Introduction: Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods: This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion: At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.


Subject(s)
Animal Feed , Salmo salar , Transcriptome , Animals , Salmo salar/immunology , Salmo salar/genetics , Diet, Vegetarian , Animal Nutritional Physiological Phenomena , Gene Expression Profiling , Diet, Plant-Based
3.
Fish Shellfish Immunol ; 150: 109653, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801843

ABSTRACT

Land-based recirculating aquaculture systems (RAS) have risen in prevalence in recent years for Atlantic salmon production, enabling intensive production which allows increased growth and environmental control, but also having the potential for reducing water use and eutrophication. The Atlantic salmon has an anadromous life history with juvenile stages in freshwater (FW) and on-growing in seawater (SW), enabled by a transformational process known as smoltification. The timing of smoltification and transfer of smolts from FW to SW is critical under commercial production with high mortalities during this period. The impact of FW rearing system on immune function following seawater transfer (SWT) is not well understood. In this study parr were raised in either RAS or a traditional open-LOCH system until smolting and then transferred to a common marine environment. Two-weeks post-SWT fish were immune stimulated with a viral mimic (poly I:C) for 24 h to assess the ability to mount an antiviral immune response, assessed by whole transcriptome analysis of gill tissue, an important immune organ in fish. We show that unstimulated smolts reared in the LOCH had higher immune gene expression than those reared in RAS as determined by functional analysis. However, following stimulation, smolts reared in the RAS mounted a greater magnitude of response with a suite of immune genes displaying higher fold induction of transcription compared to LOCH reared smolts. We suggest RAS smolts have a lower steady state immune-associated transcriptome likely due to an unvarying environment, in terms of environmental factors and lack of exposure to pathogens, which shows a compensatory mechanism following stimulation allowing immune 'catch-up' with those reared in the LOCH. Alternatively, the RAS fish are experiencing an excessive response to the immune stimulation.


Subject(s)
Aquaculture , Fresh Water , Gills , Salmo salar , Seawater , Animals , Seawater/chemistry , Salmo salar/immunology , Gills/immunology , Poly I-C/pharmacology , Fish Diseases/immunology , Fish Diseases/virology , Immunity, Innate
4.
Fish Shellfish Immunol ; 145: 109358, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176627

ABSTRACT

The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.


Subject(s)
Bacterial Infections , Fish Diseases , Salmo salar , Animals , Spleen , Endothelial Cells
5.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38181891

ABSTRACT

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Subject(s)
Salmo salar , Animals , Salmo salar/genetics , Gene Expression Regulation , Head Kidney , Endothelial Cells , Gene Expression Profiling/veterinary , Transcriptome , RNA, Small Nuclear , Mammals
6.
Cells ; 12(16)2023 08 19.
Article in English | MEDLINE | ID: mdl-37626907

ABSTRACT

Serum amyloid A (SAA) proteins belong to a family of acute-phase reactants, playing an integral role in defending the organism from pathological damage. Despite a wealth of data on the regulation of SAA transcripts in teleosts, there is only limited information on these proteins' abundance in fish. The aim of this study is to characterise SAA protein levels in salmonids using a newly developed antibody specific to salmonid SAA. The salmonid SAA antibody detected SAA and accurately discriminated between stimulated and control specimens from rainbow trout macrophage cell line (RTS-11) in vitro, as well as rainbow trout challenged with Aeromonas salmonicida- or flagellin-stimulated Atlantic salmon in vivo. The presence of SAA protein was analysed in RTS-11 cell line supernatants, liver, and spleen samples using ELISA, immunoblotting, and immunohistochemistry. This study is the first to characterise SAA protein levels in salmonids in vivo and in vitro. The newly developed salmonid SAA antibody was able to discriminate between stimulated and unstimulated specimens, showing that it can be used to study the acute-phase response in salmonids with the potential to be further developed into assays to monitor and evaluate health in wild and farmed fish.


Subject(s)
Oncorhynchus mykiss , Serum Amyloid A Protein , Animals , Antibodies , Acute-Phase Proteins , Enzyme-Linked Immunosorbent Assay
7.
Front Microbiol ; 14: 1200997, 2023.
Article in English | MEDLINE | ID: mdl-37426003

ABSTRACT

With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in "closed" aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.

8.
Genomics ; 115(4): 110663, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286012

ABSTRACT

Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.


Subject(s)
Oncorhynchus mykiss , Zebrafish , Humans , Animals , Mice , Zebrafish/genetics , Genome , Oncorhynchus mykiss/genetics , Interferons/genetics , Antiviral Agents/pharmacology
9.
J Comp Physiol B ; 193(2): 171-192, 2023 03.
Article in English | MEDLINE | ID: mdl-36650338

ABSTRACT

Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.


Subject(s)
Lactation , Mammary Glands, Animal , Female , Animals , Mice , Mammary Glands, Animal/metabolism , Milk/metabolism
10.
Front Immunol ; 13: 1023235, 2022.
Article in English | MEDLINE | ID: mdl-36341406

ABSTRACT

The use of functional feeds for farmed fish is now regarded as a key factor in improving fish health and performance against infectious disease. However, the mechanisms by which these nutritional components modulate the immune response are not fully understood. The present study was undertaken to identify the suitability of both primary gut-associated lymphoid tissue (GALT) leucocyte cells and established rainbow trout cell lines as potential alternative methods to test functional feed ingredients prior to full fish feeding trials that can take months to complete. In addition to the primary GALT culture cells, the two rainbow cell lines RTS11 and RTgutGC which are from macrophage and gut epithelial cells, respectively. The cells were stimulated with a variety of pathogen associated molecular patterns (PAMPs) (PHA and Poly I:C) and recombinant rainbow trout IL-1ß (rIL-1ß), a proinflammatory cytokine, additionally two forms of ß-glucan, a prebiotic commonly used aquafeeds were used as stimulants. From this, the suitability of cell models as a health screen for functional feeds was assessed. GALT leucocytes were deemed most effective to act as a health screen over the 4hr time point demonstrating responses to Poly I:C, PHA, and rIL-1ß. RTS11 and RTgutGC also responded to the stimulants but did not give a strong T-cell response, most likely reflecting the nature of the cell type as opposed to the mixed cell populations from the primary GALT cell cultures. When stimulated with both forms of ß-glucan, GALT leucocytes demonstrated a strong proinflammatory and T-cell response.


Subject(s)
Oncorhynchus mykiss , beta-Glucans , Animals , Cell Line , Poly I-C/metabolism , beta-Glucans/metabolism , Lymphoid Tissue
11.
BMC Genomics ; 23(1): 775, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443659

ABSTRACT

BACKGROUND: Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus responsible for large losses in Atlantic salmon (Salmo salar) aquaculture. Current available treatments and vaccines are not fully effective, and therefore selective breeding to produce ISAV-resistant strains of Atlantic salmon is a high priority for the industry. Genomic selection and potentially genome editing can be applied to enhance the disease resistance of aquaculture stocks, and both approaches can benefit from increased knowledge on the genomic mechanisms of resistance to ISAV. To improve our understanding of the mechanisms underlying resistance to ISAV in Atlantic salmon we performed a transcriptomic study in ISAV-infected salmon with contrasting levels of resistance to this virus. RESULTS: Three different tissues (gills, head kidney and spleen) were collected on 12 resistant and 12 susceptible fish at three timepoints (pre-challenge, 7 and 14 days post challenge) and RNA sequenced. The transcriptomes of infected and non-infected fish and of resistant and susceptible fish were compared at each timepoint. The results show that the responses to ISAV are organ-specific; an important response to the infection was observed in the head kidney, with up-regulation of immune processes such as interferon and NLR pathways, while in gills and spleen the response was more moderate. In addition to immune related genes, our results suggest that other processes such as ubiquitination and ribosomal processing are important during early infection with ISAV. Moreover, the comparison between resistant and susceptible fish has also highlighted some interesting genes related to ubiquitination, intracellular transport and the inflammasome. CONCLUSIONS: Atlantic salmon infection by ISAV revealed an organ-specific response, implying differential function during the infection. An immune response was observed in the head kidney in these early timepoints, while gills and spleen showed modest responses in comparison. Comparison between resistance and susceptible samples have highlighted genes of interest for further studies, for instance those related to ubiquitination or the inflammasome.


Subject(s)
Isavirus , Salmo salar , Animals , Head Kidney , Salmo salar/genetics , Spleen , Gills , Transcriptome , Inflammasomes
12.
Front Immunol ; 13: 984799, 2022.
Article in English | MEDLINE | ID: mdl-36091005

ABSTRACT

The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nuclei isolated from the liver of Atlantic salmon (Salmo salar L.) contrasting control fish with those challenged with a pathogenic strain of Aeromonas salmonicida, a problematic bacterial pathogen in global aquaculture. We identified the major liver cell types and their sub-populations, revealing poor conservation of many hepatic cell marker genes utilized in mammals, while identifying novel heterogeneity within the hepatocyte, lymphoid, and myeloid lineages. This included polyploid hepatocytes, multiple T cell populations including γδ T cells, and candidate populations of monocytes/macrophages and dendritic cells. A dominant hepatocyte population radically remodeled its transcriptome following infection to activate the acute phase response and other defense functions, while repressing routine functions such as metabolism. These defense-specialized hepatocytes showed strong activation of genes controlling protein synthesis and secretion, presumably to support the release of acute phase proteins into circulation. The infection response further involved up-regulation of numerous genes in an immune-cell specific manner, reflecting functions in pathogen recognition and killing, antigen presentation, phagocytosis, regulation of inflammation, B cell differentiation and T cell activation. Overall, this study greatly enhances our understanding of the multifaceted role played by liver immune and non-immune cells in host defense and metabolic remodeling following infection and provides many novel cell-specific marker genes to empower future studies of this organ in fishes.


Subject(s)
Aeromonas salmonicida , Salmo salar , Animals , Biomarkers , Hepatocytes , Liver , Mammals , Salmo salar/genetics , Transcriptome
13.
Sci Rep ; 12(1): 121, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996900

ABSTRACT

Herein, the effect of dietary inclusion of insect (Tenebrio molitor) meal on hepatic pathways of apoptosis and autophagy in three farmed fish species, gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss), fed diets at 25%, 50% and 60% insect meal inclusion levels respectively, was investigated. Hepatic proteome was examined by liver protein profiles from the three fish species, obtained by two-dimensional gel electrophoresis. Although cellular stress was evident in the three teleost species following insect meal, inclusion by T. molitor, D. labrax and O. mykiss suppressed apoptosis through induction of hepatic autophagy, while in S. aurata both cellular procedures were activated. Protein abundance showed that a total of 30, 81 and 74 spots were altered significantly in seabream, European seabass and rainbow trout, respectively. Insect meal inclusion resulted in individual protein abundance changes, with less number of proteins altered in gilthead seabream compared to European seabass and rainbow trout. This is the first study demonstrating that insect meal in fish diets is causing changes in liver protein abundances. However, a species-specific response both in the above mentioned bioindicators, indicates the need to strategically manage fish meal replacement in fish diets per species.


Subject(s)
Animal Feed , Apoptosis , Autophagy , Edible Insects/embryology , Fish Proteins/metabolism , Fisheries , Fishes/metabolism , Liver/metabolism , Proteome , Tenebrio/embryology , Animals , Bass/metabolism , Larva , Nutritive Value , Oncorhynchus mykiss/metabolism , Proteomics , Sea Bream/metabolism , Species Specificity
14.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34718723

ABSTRACT

The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent "explosion" of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial "wave" of rediploidization in the late Cretaceous (85-106 Ma). This was followed by a period of relative genomic stasis lasting 17-39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.


Subject(s)
Salmonidae , Animals , Evolution, Molecular , Gene Duplication , Genome , Phylogeny , Salmonidae/genetics
15.
Front Immunol ; 12: 794593, 2021.
Article in English | MEDLINE | ID: mdl-34956228

ABSTRACT

The gill of teleost fish is a multifunctional organ involved in many physiological processes, including protection of the mucosal gill surface against pathogens and other environmental antigens by the gill-associated lymphoid tissue (GIALT). Climate change associated phenomena, such as increasing frequency and magnitude of harmful algal blooms (HABs) put extra strain on gill function, contributing to enhanced fish mortality and fish kills. However, the molecular basis of the HAB-induced gill injury remains largely unknown due to the lack of high-throughput transcriptomic studies performed on teleost fish in laboratory conditions. We used juvenile rainbow trout (Oncorhynchus mykiss) to investigate the transcriptomic responses of the gill tissue to two (high and low) sublethal densities of the toxin-producing alga Prymnesium parvum, in relation to non-exposed control fish. The exposure time to P. parvum (4-5 h) was sufficient to identify three different phenotypic responses among the exposed fish, enabling us to focus on the common gill transcriptomic responses to P. parvum that were independent of dose and phenotype. The inspection of common differentially expressed genes (DEGs), canonical pathways, upstream regulators and downstream effects pointed towards P. parvum-induced inflammatory response and gill inflammation driven by alterations of Acute Phase Response Signalling, IL-6 Signalling, IL-10 Signalling, Role of PKR in Interferon Induction and Antiviral Response, IL-8 Signalling and IL-17 Signalling pathways. While we could not determine if the inferred gill inflammation was progressing or resolving, our study clearly suggests that P. parvum blooms may contribute to the serious gill disorders in fish. By providing insights into the gill transcriptomic responses to toxin-producing P. parvum in teleost fish, our research opens new avenues for investigating how to monitor and mitigate toxicity of HABs before they become lethal.


Subject(s)
Gills/immunology , Haptophyta/metabolism , Inflammation/immunology , Oncorhynchus mykiss/immunology , Acute-Phase Reaction/genetics , Animals , Cytokines/genetics , Environmental Exposure/adverse effects , Fish Proteins/genetics , Harmful Algal Bloom , High-Throughput Screening Assays , Hypoxia/genetics , Signal Transduction , Toxins, Biological/adverse effects , Transcriptome
16.
BMC Microbiol ; 21(1): 313, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34758745

ABSTRACT

BACKGROUND: Understanding the influence of methodology on results is an essential consideration in experimental design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing versus biopsy excision. Results demonstrate the variation introduced by altered sampling strategies and enhance the available knowledge of the fish gill microbiome. RESULTS: The microbiome was sampled using swabs and biopsies from fish gills, with identical treatment of samples for 16S next generation Illumina sequencing. Results show a clear divergence in microbial communities obtained through the different sampling strategies, with swabbing consistently isolating a more diverse microbial consortia, and suffering less from the technical issue of host DNA contamination associated with biopsy use. Sequencing results from biopsy-derived extractions, however, hint at the potential for more cryptic localisation of some community members. CONCLUSIONS: Overall, results demonstrate a divergence in the obtained microbial community when different sampling methodology is used. Swabbing appears a superior method for sampling the microbiota of mucosal surfaces for broad ecological research in fish, whilst biopsies might be best applied in exploration of communities beyond the reach of swabs, such as sub-surface and intracellular microbes, as well as in pathogen diagnosis. Most studies on the external microbial communities of aquatic organisms utilise swabbing for sample collection, likely due to convenience. Much of the ultrastructure of gill tissue in live fish is, however, potentially inaccessible to swabbing, meaning swabbing might fail to capture the full diversity of gill microbiota. This work therefore also provides valuable insight into partitioning of the gill microbiota, informing varied applications of different sampling methods in experimental design for future research.


Subject(s)
Bacteria/isolation & purification , Gills/microbiology , Microbiota , Salmo salar/microbiology , Animals , Aquaculture , Bacteria/classification , Bacteria/genetics , Phylogeny , Skin/microbiology , Specimen Handling
17.
Front Immunol ; 12: 669889, 2021.
Article in English | MEDLINE | ID: mdl-34017342

ABSTRACT

Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.


Subject(s)
Fish Proteins/genetics , Gene Expression Profiling , Gills/immunology , Salmo salar/genetics , Salmo salar/immunology , Single-Cell Analysis , Transcriptome , Animal Migration , Animals , Gene Expression Regulation , Gills/cytology , RNA-Seq , Salt Tolerance , Seawater
18.
G3 (Bethesda) ; 11(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33710311

ABSTRACT

The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a seawater (SW) migratory morph (smolt), known as smoltification, entails a reorganization of gill function to cope with the altered water environment. Recently, we used RNAseq to characterize the breadth of transcriptional change which takes place in the gill in the FW phase of smoltification. This highlighted the importance of extended exposure to short, winter-like photoperiods (SP) followed by a subsequent increase in photoperiod for completion of transcriptional reprogramming in FW and efficient growth following transfer to SW. Here, we extend this analysis to examine the consequences of this photoperiodic history-dependent reprogramming for subsequent gill responses upon exposure to SW. We use RNAseq to analyze gill samples taken from fish raised on the photoperiod regimes we used previously and then challenged by SW exposure for 24 hours. While fish held on constant light (LL) throughout were able to hypo-osmoregulate during a 24 hours SW challenge, the associated gill transcriptional response was highly distinctive from that in fish which had experienced a 7-week period of exposure to SP followed by a return to LL (SPLL) and had consequently acquired the characteristics of fully developed smolts. Fish transferred from LL to SP, and then held on SP for the remainder of the study was unable to hypo-osmoregulate, and the associated gill transcriptional response to SW exposure featured many transcripts apparently regulated by the glucocorticoid stress axis and by the osmo-sensing transcription factor NFAT5. The importance of these pathways for the gill transcriptional response to SW exposure appears to diminish as a consequence of photoperiod mediated induction of the smolt phenotype, presumably reflecting preparatory developmental changes taking place during this process.


Subject(s)
Photoperiod , Salmo salar , Animals , Fresh Water , Gills , Salmo salar/genetics , Seawater
19.
Nat Commun ; 11(1): 5176, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33056985

ABSTRACT

Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species.


Subject(s)
Animals, Wild/genetics , Domestication , Genome , Genomic Structural Variation , Salmo salar/genetics , Animals , DNA Transposable Elements/genetics , Fisheries , Gene Duplication , Gene Frequency , Genetic Variation , Genetics, Population , Genotyping Techniques , Male , Molecular Sequence Annotation , Phylogeography , Whole Genome Sequencing , Workflow
20.
Front Genet ; 11: 610, 2020.
Article in English | MEDLINE | ID: mdl-32636874

ABSTRACT

The gill of teleost fish is a multifunctional organ involved in many physiological processes such as gas exchange, osmotic and ionic regulation, acid-base balance and excretion of nitrogenous waste. Due to its extensive interface with the environment, the gill plays a key role as a primary mucosal defense tissue against pathogens, as manifested by the presence of the gill-associated lymphoid tissue (GIALT). In recent years, the prevalence of multifactorial gill pathologies has increased significantly, causing substantial losses in Atlantic salmon aquaculture. The transition from healthy to unhealthy gill phenotypes and the progression of multifactorial gill pathologies, such as proliferative gill disease (PGD), proliferative gill inflammation (PGI) and complex gill disorder (CGD), are commonly characterized by epithelial hyperplasia, lamellar fusion and inflammation. Routine monitoring for PGD relies on visual inspection and non-invasive scoring of the gill tissue (gross morphology), coupled with histopathological examination of gill sections. To explore the underlying molecular events that are associated with the progression of PGD, we sampled Atlantic salmon from three different marine production sites in Scotland and examined the gill tissue at three different levels of organization: gross morphology with the use of PGD scores (macroscopic examination), whole transcriptome (gene expression by RNA-seq) and histopathology (microscopic examination). Our results strongly suggested that the changes in PGD scores of the gill tissue were not associated with the changes in gene expression or histopathology. In contrast, integration of the gill RNA-seq data with the gill histopathology enabled us to identify common gene expression patterns associated with multifactorial gill disease, independently from the origin of samples. We demonstrated that the gene expression patterns associated with multifactorial gill disease were dominated by two processes: a range of immune responses driven by pro-inflammatory cytokines and the events associated with tissue damage and repair, driven by caspases and angiogenin.

SELECTION OF CITATIONS
SEARCH DETAIL
...