Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38530908

ABSTRACT

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Subject(s)
Adiponectin , Diabetes Mellitus, Type 2 , Glycocalyx , Kidney Glomerulus , Animals , Glycocalyx/metabolism , Glycocalyx/drug effects , Adiponectin/metabolism , Adiponectin/genetics , Mice , Diabetes Mellitus, Type 2/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/drug effects , Tumor Necrosis Factor-alpha/metabolism , Syndecan-4/metabolism , Syndecan-4/genetics , Disease Models, Animal , Mice, Inbred C57BL
2.
Am J Respir Crit Care Med ; 204(5): 523-535, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33961755

ABSTRACT

Rationale: Preschool wheezing is heterogeneous, but the underlying mechanisms are poorly understood.Objectives: To investigate lower airway inflammation and infection in preschool children with different clinical diagnoses undergoing elective bronchoscopy and BAL.Methods: We recruited 136 children aged 1-5 years (105 with recurrent severe wheeze [RSW]; 31 with nonwheezing respiratory disease [NWRD]). Children with RSW were assigned as having episodic viral wheeze (EVW) or multiple-trigger wheeze (MTW). We compared lower airway inflammation and infection in different clinical diagnoses and undertook data-driven analyses to determine clusters of pathophysiological features, and we investigated their relationships with prespecified diagnostic labels.Measurements and Main Results: Blood eosinophil counts and percentages and allergic sensitization were significantly higher in children with RSW than in children with a NWRD. Blood neutrophil counts and percentages, BAL eosinophil and neutrophil percentages, and positive bacterial culture and virus detection rates were similar between groups. However, pathogen distribution differed significantly, with higher detection of rhinovirus in children with RSW and higher detection of Moraxella in sensitized children with RSW. Children with EVW and children with MTW did not differ in terms of blood or BAL-sample inflammation, or bacteria or virus detection. The Partition around Medoids algorithm revealed four clusters of pathophysiological features: 1) atopic (17.9%), 2) nonatopic with a low infection rate and high use of inhaled corticosteroids (31.3%), 3) nonatopic with a high infection rate (23.1%), and 4) nonatopic with a low infection rate and no use of inhaled corticosteroids (27.6%). Cluster allocation differed significantly between the RSW and NWRD groups (RSW was evenly distributed across clusters, and 60% of the NWRD group was assigned to cluster 4; P < 0.001). There was no difference in cluster membership between the EVW and MTW groups. Cluster 1 was dominated by Moraxella detection (P = 0.04), and cluster 3 was dominated by Haemophilus or Staphylococcus or Streptococcus detection (P = 0.02).Conclusions: We identified four clusters of severe preschool wheeze, which were distinguished by using sensitization, peripheral eosinophilia, lower airway neutrophilia, and bacteriology.


Subject(s)
Asthma/classification , Asthma/diagnosis , Asthma/genetics , Respiratory Sounds/classification , Respiratory Sounds/diagnosis , Respiratory Sounds/genetics , Symptom Assessment , Asthma/physiopathology , Child, Preschool , Female , Genetic Variation , Genotype , Humans , Infant , Male , Phenotype , Respiratory Sounds/physiopathology , Risk Factors , Severity of Illness Index
3.
Nat Metab ; 1(6): 615-629, 2019 06.
Article in English | MEDLINE | ID: mdl-32694805

ABSTRACT

Pancreatic ß-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader ß-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected 'hub' cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory ß-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.


Subject(s)
Calcium/metabolism , Insulin-Secreting Cells/metabolism , Animals , Glucose/metabolism , In Vitro Techniques , Insulin/metabolism , Signal Transduction , Zebrafish/metabolism
4.
Expert Rev Respir Med ; 11(11): 867-874, 2017 11.
Article in English | MEDLINE | ID: mdl-28826280

ABSTRACT

INTRODUCTION: Paediatric severe therapy resistant asthma (STRA) affects a very small proportion of all children with asthma, but results in significant morbidity, has a high risk of mortality and utilises approximately half of all healthcare resources for childhood asthma. children with STRA need add-on 'beyond guidelines' therapies because of poor control despite maximal conventional treatments and optimisation of basic asthma management. however, STRA is heterogeneous with marked phenotypic variation between patients and mechanisms from adult severe asthma cannot be extrapolated to children. Areas covered: This review will cover our current knowledge of paediatric STRA pathophysiology, with examples of translational approaches that have been used to define sub-phenotypes including; 1. pre-clinical age-appropriate models using clinically relevant allergens, 2. in vitro techniques incorporating complex co-cultures of structural and inflammatory cells, and 3. techniques that allow detailed cellular immunophenotyping of small airway samples will be discussed. Studies using these approaches that have demonstrated the importance of the innate mediator IL-33 and vitamin D deficiency in severe steroid resistant disease will also be discussed. Expert commentary: These experimental approaches allow investigation of age and disease specific molecular pathways and the development of personalised therapies that can be stratified and targeted to sub-phenotypes of paediatric STRA.


Subject(s)
Asthma/drug therapy , Asthma/diagnosis , Asthma/etiology , Child , Humans , Phenotype
5.
Front Pediatr ; 5: 154, 2017.
Article in English | MEDLINE | ID: mdl-28725641

ABSTRACT

Although a rare disease, severe therapy-resistant asthma in children is a cause of significant morbidity and results in utilization of approximately 50% of health-care resources for asthma. Improving control for children with severe asthma is, therefore, an urgent unmet clinical need. As a group, children with severe asthma have severe and multiple allergies, steroid resistant airway eosinophilia, and significant structural changes of the airway wall (airway remodeling). Omalizumab is currently the only add-on therapy that is licensed for use in children with severe asthma. However, limitations of its use include ineligibility for approximately one-third of patients because of serum IgE levels outside the recommended range and lack of clinical efficacy in a further one-third. Pediatric severe asthma is thus markedly heterogeneous, but our current understanding of the different mechanisms underpinning various phenotypes is very limited. We know that there are distinctions between the factors that drive pediatric and adult disease since pediatric disease develops in the context of a maturing immune system and during lung growth and development. This review summarizes the current data that give insight into the pathophysiology of pediatric severe asthma and will highlight potential targets for novel therapies. It is apparent that in order to identify novel treatments for pediatric severe asthma, the challenge of undertaking mechanistic studies using age appropriate experimental models and airway samples from children needs to be accepted to allow a targeted approach of personalized medicine to be achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...