Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000114

ABSTRACT

Early diagnosis and treatment of chronic kidney disease (CKD) is a worldwide challenge. Subjects with albumin-to-creatinine ratio (ACR) ≥ 30 mg/g and preserved renal function are considered to be at no cardiorenal risk in clinical practice, but prospective clinical studies evidence increased risk, even at the high-normal (HN) ACR range (10-30 mg/g), supporting the need to identify other molecular indicators for early assessment of patients at higher risk. Following our previous studies, here we aim to stratify the normoalbuminuria range according to cardiorenal risk and identify the glycoproteins and N-glycosylation sites associated with kidney damage in subclinical CKD. Glycoproteins were analyzed in urine from hypertensive patients within the HN ACR range compared to control group (C; ACR < 10 mg/g) by mass spectrometry. A different cohort was analyzed for confirmation (ELISA) and sex perspective was evaluated. Patients' follow-up for 8 years since basal urine collection revealed higher renal function decline and ACR progression for HN patients. Differential N-glycopeptides and their N -glycosylation sites were also identified, together with their pathogenicity. N-glycosylation may condition pathological protein deregulation, and a panel of 62 glycoproteins evidenced alteration in normoalbuminuric subjects within the HN range. Haptoglobin-related protein, haptoglobin, afamin, transferrin, and immunoglobulin heavy constant gamma 1 (IGHG1) and 2 (IGHG2) showed increased levels in HN patients, pointing to disturbed iron metabolism and tubular reabsorption and supporting the tubule as a target of interest in the early progression of CKD. When analyzed separately, haptoglobin, afamin, transferrin, and IGHG2 remained significant in HN, in both women and men. At the peptide level, 172 N-glycopeptides showed differential abundance in HN patients, and 26 showed high pathogenicity, 10 of them belonging to glycoproteins that do not show variation between HN and C groups. This study highlights the value of glycosylation in subjects not meeting KDIGO criteria for CKD. The identified N-glycopeptides and glycosylation sites showed novel targets, for both the early assessment of individual cardiorenal risk and for intervention aimed at anticipating CKD progression.


Subject(s)
Glycopeptides , Renal Insufficiency, Chronic , Humans , Male , Female , Glycopeptides/urine , Renal Insufficiency, Chronic/urine , Middle Aged , Glycosylation , Aged , Biomarkers/urine , Creatinine/urine , Glycoproteins/urine , Disease Progression , Albuminuria/urine , Risk Factors , Haptoglobins/metabolism
2.
Article in English | MEDLINE | ID: mdl-38718948

ABSTRACT

BACKGROUND: Growing evidence demonstrates the importance of high- and low-density lipoprotein cholesterol in certain immune and allergy-mediated diseases. OBJECTIVE: This study aimed to evaluate levels of high- and low-density lipoprotein cholesterol and apolipoproteins A1 and B in sera from a cohort of patients presenting with hypersensitivity reactions. We further assessed the function of high-density lipoprotein particles as well as their involvement in the molecular mechanisms of anaphylaxis. METHODS: Lipid profile determination was performed in paired (acute and baseline) serum samples from 153 patients. Thirty-eight experienced a non-anaphylactic reaction and 115 had an anaphylactic reaction (88 moderate and 27 severe). Lecithin cholesterol acyl transferase activity was assessed in patient sera, and we also evaluated macrophage cholesterol efflux in response to the serum samples. Last, the effect of anaphylactic-derived high-density lipoprotein (HDL) particles on the endothelial barrier was studied. Detailed methods are provided in the Methods section in this article's Online Repository available at www.jacionline.org. RESULTS: Serum samples from severe anaphylactic reactions show statistically significant low levels of HDL cholesterol, low-density lipoprotein cholesterol, and apolipoproteins A1 and B, which points to their possible role as biomarkers. Specifically, HDL particles play a protective role in cardiovascular diseases. Using functional human serum cell assays, we observed impaired capacity of apolipoprotein B-depleted serum to induce macrophage cholesterol efflux in severe anaphylactic reactions. In addition, purified HDL particles from human anaphylactic sera failed to stabilize and maintain the endothelial barrier. CONCLUSION: These results encourage further research on HDL functions in severe anaphylaxis, which may lead to new diagnostic and therapeutic strategies.

3.
J Proteome Res ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594816

ABSTRACT

Thoracic aortic aneurysm (TAA) is mainly sporadic and with higher incidence in the presence of a bicuspid aortic valve (BAV) for unknown reasons. The lack of drug therapy to delay TAA progression lies in the limited knowledge of pathophysiology. We aimed to identify the molecular hallmarks that differentiate the aortic dilatation associated with BAV and tricuspid aortic valve (TAV). Aortic vascular smooth muscle cells (VSMCs) isolated from sporadic TAA patients with BAV or TAV were analyzed by mass spectrometry. DNA oxidative damage assay and cell cycle profiling were performed in three independent cohorts supporting proteomics data. The alteration of secreted proteins was confirmed in plasma. Stress phenotype, oxidative stress, and enhanced DNA damage response (increased S-phase arrest and apoptosis) were found in BAV-TAA patients. The increased levels of plasma C1QTNF5, LAMA2, THSB3, and FAP confirm the enhanced stress in BAV-TAA. Plasma FAP and BGN point to an increased inflammatory condition in TAV. The arterial wall of BAV patients shows a limited capacity to counteract drivers of sporadic TAA. The molecular pathways identified support the need of differential molecular diagnosis and therapeutic approaches for BAV and TAV patients, showing specific markers in plasma which may serve to monitor therapy efficacy.

4.
Allergy ; 78(1): 202-213, 2023 01.
Article in English | MEDLINE | ID: mdl-35841381

ABSTRACT

BACKGROUND: Anaphylaxis is the most acute and life-threatening manifestation of allergic disorders. Currently, there is a need to improve its medical management and increase the understanding of its molecular mechanisms. This study aimed to quantify the extravasation underlying human anaphylactic reactions and propose new theragnostic approaches. METHODS: Molecular determinations were performed in paired serum samples obtained during the acute phase and at baseline from patients presenting with hypersensitivity reactions. These were classified according to their severity as Grades 1, 2 and 3, the two latter being considered anaphylaxis. Tryptase levels were measured by ImmunoCAP, and serum protein concentration was quantified by Bradford assay. Human serum albumin (HSA) and haemoglobin beta subunit (HBB) levels were determined by Western blot and polyacrylamide gel electrophoresis, respectively. RESULTS: A total of 150 patients were included in the study. Of them, 112 had experienced anaphylaxis (83 and 29 with Grade 2 and 3 reactions, respectively). Tryptase diagnostic efficiency substantially improved when considering patients' baseline values (33%-54%) instead of the acute value threshold (21%). Serum protein concentration and HSA significantly decreased in anaphylaxis (p < .0001). HSA levels dropped with the severity of the reaction (6% and 15% for Grade 2 and 3 reactions, respectively). Furthermore, HBB levels increased during the acute phase of all hypersensitivity reactions (p < .0001). CONCLUSIONS: For the first time, the extravasation underlying human anaphylaxis has been evaluated based on the severity of the reaction using HSA and protein concentration measurements. Additionally, our findings propose new diagnostic and potential therapeutic approaches for this pathological event.


Subject(s)
Anaphylaxis , Humans , Anaphylaxis/diagnosis , Anaphylaxis/etiology , Tryptases , Serum Albumin, Human
5.
Mol Oncol ; 16(14): 2658-2671, 2022 07.
Article in English | MEDLINE | ID: mdl-35338693

ABSTRACT

Neoadjuvant chemotherapy (NACT) outcomes vary according to breast cancer (BC) subtype. Since pathologic complete response is one of the most important target endpoints of NACT, further investigation of NACT outcomes in BC is crucial. Thus, identifying sensitive and specific predictors of treatment response for each phenotype would enable early detection of chemoresistance and residual disease, decreasing exposures to ineffective therapies and enhancing overall survival rates. We used liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics to detect molecular changes in plasma of three different BC subtypes following the same NACT regimen, with the aim of searching for potential predictors of response. The metabolomics data set was analyzed by combining univariate and multivariate statistical strategies. By using ANOVA-simultaneous component analysis (ASCA), we were able to determine the prognostic value of potential biomarker candidates of response to NACT in the triple-negative (TN) subtype. Higher concentrations of docosahexaenoic acid and secondary bile acids were found at basal and presurgery samples, respectively, in the responders group. In addition, the glycohyocholic and glycodeoxycholic acids were able to classify TN patients according to response to treatment and overall survival with an area under the curve model > 0.77. In relation to luminal B (LB) and HER2+ subjects, it should be noted that significant differences were related to time and individual factors. Specifically, tryptophan was identified to be decreased over time in HER2+ patients, whereas LysoPE (22:6) appeared to be increased, but could not be associated with response to NACT. Therefore, the combination of untargeted-based metabolomics along with longitudinal statistical approaches may represent a very useful tool for the improvement of treatment and in administering a more personalized BC follow-up in the clinical practice.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Female , Humans , Metabolomics , Neoadjuvant Therapy/methods
6.
Antioxidants (Basel) ; 10(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34356333

ABSTRACT

Moderately increased albuminuria, defined by an albumin to creatinine ratio (ACR) > 30 mg/g, is an indicator of subclinical organ damage associated with a higher risk of cardiovascular and renal disease. Normoalbuminuric subjects are considered at no cardiorenal risk in clinical practice, and molecular changes underlying early development are unclear. To decipher subjacent mechanisms, we stratified the normoalbuminuria condition. A total of 37 hypertensive patients under chronic renin-angiotensin system (RAS) suppression with ACR values in the normoalbuminuria range were included and classified as control (C) (ACR < 10 mg/g) and high-normal (HN) (ACR = 10-30 mg/g). Target metabolomic analysis was carried out by liquid chromatography and mass spectrometry to investigate the role of the cardiorenal risk urinary metabolites previously identified. Besides this, urinary free fatty acids (FFAs), fatty acid binding protein 1 (FABP1) and nephrin were analyzed by colorimetric and ELISA assays. A Mann-Whitney test was applied, ROC curves were calculated and Spearman correlation analysis was carried out. Nine metabolites showed significantly altered abundance in HN versus C, and urinary FFAs and FABP1 increased in HN group, pointing to dysregulation in the tricarboxylic acid cycle (TCA) cycle and fatty acids ß-oxidation. We showed here how cardiorenal metabolites associate with albuminuria, already in the normoalbuminuric range, evidencing early renal damage at a tubular level and suggesting increased ß-oxidation to potentially counteract fatty acids overload in the HN range.

7.
Antioxidants (Basel) ; 10(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199603

ABSTRACT

Acute Kidney Injury (AKI) affects up to 30% of the patients who undergo cardiac surgery (CVS) and is related to higher mortality. We aim to investigate molecular features associated with in-hospital AKI development and determine the predictive value of these features when analyzed preoperatively. This is a case-control study. From an initial cohort of 110 recruited subjects, a total of 60 patients undergoing cardiac surgery were included: 20 (33%) developed in-hospital AKI (CVS-AKI) and 40 did not (controls, CVS-C). Pre- and post-surgery samples were collected and a prospective study was carried out. A total of 312 serum samples and 258 urine samples were analyzed by nuclear magnetic resonance, mass spectrometry and ELISA. Six features predicted AKI development in pre-surgery samples: urinary kidney functional loss marker kidney injury molecule-1 (uKIM-1), 2-hydroxybutyric acid, 2-hydroxyphenylacetic acid, hippuric acid, phosphoethanolamine and spermidine. Two of them stood out as powerful predictors. Pre-surgery uKIM-1 levels were increased in CVS-AKI vs. CVS-C (AUC = 0.721, p-value = 0.0392) and associated strongly with the outcome (OR = 5.333, p-value = 0.0264). Spermidine showed higher concentration in CVS-AKI (p-value < 0.0001, AUC = 0.970) and had a strong association with the outcome (OR = 69.75, p-value < 0.0001). uKIM-1 and particularly spermidine predict in-hospital AKI associated with CVS in preoperative samples. These findings may aid in preventing postoperative AKI and improve prognosis of CVS.

8.
J Pathol ; 254(3): 229-238, 2021 07.
Article in English | MEDLINE | ID: mdl-33885146

ABSTRACT

Thoracic aortic aneurysm (TAA) develops silently and asymptomatically and is a major cause of mortality. TAA prevalence is greatly underestimated, it is usually diagnosed incidentally, and its treatment consists mainly of prophylactic surgery based on the aortic diameter. The lack of effective drugs and biological markers to identify and stratify TAAs by risk before visible symptoms results from scant knowledge of its pathophysiological mechanisms. Here we integrate the structural impairment affecting non-syndromic non-familial TAA with the main cellular and molecular changes described so far and consider how these changes are interconnected through specific pathways. The ultimate goal is to define much-needed novel markers of TAA, and so the potential of previously identified molecules to aid in early diagnosis/prognosis is also discussed. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Aortic Aneurysm, Thoracic , Humans
9.
Cancers (Basel) ; 13(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466323

ABSTRACT

PURPOSE: The aim of this study is to identify differential metabolomic signatures in plasma samples of distinct subtypes of breast cancer patients that could be used in clinical practice as diagnostic biomarkers for these molecular phenotypes and to provide a more individualized and accurate therapeutic procedure. METHODS: Untargeted LC-HRMS metabolomics approach in positive and negative electrospray ionization mode was used to analyze plasma samples from LA, LB, HER2+ and TN breast cancer patients and healthy controls in order to determine specific metabolomic profiles through univariate and multivariate statistical data analysis. RESULTS: We tentatively identified altered metabolites displaying concentration variations among the four breast cancer molecular subtypes. We found a biomarker panel of 5 candidates in LA, 7 in LB, 5 in HER2 and 3 in TN that were able to discriminate each breast cancer subtype with a false discovery range corrected p-value < 0.05 and a fold-change cutoff value > 1.3. The model clinical value was evaluated with the AUROC, providing diagnostic capacities above 0.85. CONCLUSION: Our study identifies metabolic profiling differences in molecular phenotypes of breast cancer. This may represent a key step towards therapy improvement in personalized medicine and prioritization of tailored therapeutic intervention strategies.

10.
Metabolites ; 10(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105675

ABSTRACT

Pancreatogenic diabetes mellitus (T3cDM) is a highly frequent complication of pancreatic disease, especially chronic pancreatitis, and it is often misdiagnosed as type 2 diabetes mellitus (T2DM). A correct diagnosis allows the appropriate treatment of these patients, improving their quality of life, and various technologies have been employed over recent years to search for specific biomarkers of each disease. The main aim of this metabolomic project was to find differential metabolites between T3cDM and T2DM. Reverse-phase liquid chromatography coupled to high-resolution mass spectrometry was performed in serum samples from patients with T3cDM and T2DM. Multivariate Principal Component and Partial Least Squares-Discriminant analyses were employed to evaluate between-group variations. Univariate and multivariate analyses were used to identify potential candidates and the area under the receiver-operating characteristic (ROC) curve was calculated to evaluate their diagnostic value. A panel of five differential metabolites obtained an area under the ROC curve of 0.946. In this study, we demonstrate the usefulness of untargeted metabolomics for the differential diagnosis between T3cDM and T2DM and propose a panel of five metabolites that appear altered in the comparison between patients with these diseases.

11.
Cancers (Basel) ; 12(4)2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32325731

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, with a 5-year survival rate of less than 5%. In fact, complete surgical resection remains the only curative treatment. However, fewer than 20% of patients are candidates for surgery at the time of presentation. Hence, there is a critical need to identify diagnostic biomarkers with potential clinical utility in this pathology. In this context, metabolomics could be a powerful tool to search for new robust biomarkers. Comparative metabolomic profiling was performed in serum samples from 59 unresectable PDAC patients and 60 healthy controls. Samples were analyzed by using an untargeted metabolomics workflow based on liquid chromatography, coupled to high-resolution mass spectrometry in positive and negative electrospray ionization modes. Univariate and multivariate analysis allowed the identification of potential candidates that were significantly altered in PDAC patients. A panel of nine candidates yielded excellent diagnostic capacities. Pathway analysis revealed four altered pathways in our patients. This study shows the potential of liquid chromatography coupled to high-resolution mass spectrometry as a diagnostic tool for PDAC. Furthermore, it identified novel robust biomarkers with excellent diagnostic capacities.

12.
Sci Rep ; 9(1): 20198, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882610

ABSTRACT

Colorectal cancer is one of the main causes of cancer death worldwide, and novel biomarkers are urgently needed for its early diagnosis and treatment. The utilization of metabolomics to identify and quantify metabolites in body fluids may allow the detection of changes in their concentrations that could serve as diagnostic markers for colorectal cancer and may also represent new therapeutic targets. Metabolomics generates a pathophysiological 'fingerprint' that is unique to each individual. The purpose of our study was to identify a differential metabolomic signature for metastatic colorectal cancer. Serum samples from 60 healthy controls and 65 patients with metastatic colorectal cancer were studied by liquid chromatography coupled to high-resolution mass spectrometry in an untargeted metabolomic approach. Multivariate analysis revealed a separation between patients with metastatic colorectal cancer and healthy controls, who significantly differed in serum concentrations of one endocannabinoid, two glycerophospholipids, and two sphingolipids. These findings demonstrate that metabolomics using liquid-chromatography coupled to high-resolution mass spectrometry offers a potent diagnostic tool for metastatic colorectal cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Chromatography, Liquid/methods , Colorectal Neoplasms/metabolism , Mass Spectrometry/methods , Neoplasm Metastasis , Case-Control Studies , Colorectal Neoplasms/pathology , Energy Metabolism , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL