Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661718

ABSTRACT

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Subject(s)
Cell Communication , Chemokine CCL3 , Models, Animal , Protein Biosynthesis , Transcription, Genetic , Animals , Mice , Cell Communication/immunology , Chemokine CCL3/genetics , Chemokine CCL3/immunology , Gene Knock-In Techniques , Mice, Transgenic , Muromegalovirus , Protein Biosynthesis/drug effects , Protein Biosynthesis/immunology , Transcription, Genetic/immunology , Killer Cells, Natural/immunology , Interferon-beta/pharmacology , Herpesviridae Infections/immunology
2.
Kidney Int Rep ; 9(1): 114-133, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312792

ABSTRACT

Introduction: The RNA interference (RNAi) medication lumasiran reduces hepatic oxalate production in primary hyperoxaluria type 1 (PH1). Data outside clinical trials are scarce. Methods: We report on retrospectively and observationally obtained data in 33 patients with PH1 (20 with preserved kidney function, 13 on dialysis) treated with lumasiran for a median of 18 months. Results: Among those with preserved kidney function, mean urine oxalate (Uox) decreased from 1.88 (baseline) to 0.73 mmol/1.73 m2 per 24h after 3 months, to 0.72 at 12 months, and to 0.65 at 18 months, but differed according to vitamin B6 (VB6) medication. The highest response was at month 4 (0.55, -70.8%). Plasma oxalate (Pox) remained stable over time. Glomerular filtration rate increased significantly by 10.5% at month 18. Nephrolithiasis continued active in 6 patients, nephrocalcinosis ameliorated or progressed in 1 patient each. At last follow-up, Uox remained above 1.5 upper limit of normal (>0.75 mmol/1.73 m2 per 24h) in 6 patients. Urinary glycolate (Uglyc) and plasma glycolate (Pglyc) significantly increased in all, urine citrate decreased, and alkali medication needed adaptation. Among those on dialysis, mean Pox and Pglyc significantly decreased and increased, respectively after monthly dosing (Pox: 78-37.2, Pglyc: 216.4-337.4 µmol/l). At quarterly dosing, neither Pox nor Pglyc were significantly different from baseline levels. An acid state was buffered by an increased dialysis regimen. Systemic oxalosis remained unchanged. Conclusion: Lumasiran treatment is safe and efficient. Dosage (interval) adjustment necessities need clarification. In dialysis, lack of Pox reduction may relate to dissolving systemic oxalate deposits. Pglyc increment may be a considerable acid load requiring careful consideration, which definitively needs further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL