Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026801

ABSTRACT

Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen. Resulting data were integrated with published datasets to reveal pathways supported by orthogonal datasets, including transcriptional regulation, epigenetic modifications, and MAPK signalling. The identified proviral host factors were mapped into the SARS-CoV-2 infectious cycle, including 27 proteins that were determined to impact assembly and release. Additionally, a subset of proteins were tested across other coronaviruses revealing 17 potential pan-coronavirus targets. Further studies illuminated a role for the heparan sulfate proteoglycan perlecan in SARS-CoV-2 viral entry, and found that inhibition of the non-canonical NF-kB pathway through targeting of BIRC2 restricts SARS-CoV-2 replication both in vitro and in vivo. These studies provide critical insight into the landscape of virus-host interactions driving SARS-CoV-2 replication as well as valuable targets for host-directed antivirals.

3.
Nat Commun ; 14(1): 6030, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758692

ABSTRACT

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Proteomics , Virus Replication/genetics , SARS-CoV-2 , Antiviral Agents/metabolism , Host-Pathogen Interactions/genetics
4.
Res Sq ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37720034

ABSTRACT

SARS-CoV-2 initiates infection in the conducting airways, which rely on mucocilliary clearance (MCC) to minimize pathogen penetration. However, it is unclear how MCC impacts SARS-CoV-2 spread after infection is established. To understand viral spread at this site, we performed live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 9 days. Fluorescent markers for cilia and mucus allowed longitudinal monitoring of MCC, ciliary motion, and infection. The number of infected cells peaked at 4 days post-infection in characteristic foci that followed mucus movement. Inhibition of MCC using physical and genetic perturbations limited foci. Later in infection, MCC was diminished despite relatively subtle ciliary function defects. Resumption of MCC and infection spread after mucus removal suggests that mucus secretion mediates this effect. We show that MCC facilitates SARS-CoV-2 spread early in infection while later decreases in MCC inhibit spread, suggesting a complex interplay between SARS-CoV-2 and MCC.

5.
Stem Cells Dev ; 32(9-10): 225-236, 2023 05.
Article in English | MEDLINE | ID: mdl-36803114

ABSTRACT

SARS-CoV-2 infection during pregnancy has been associated with poor maternal and neonatal outcomes and placental defects. The placenta, which acts as a physical and immunological barrier at the maternal-fetal interface, is not established until the end of the first trimester. Therefore, localized viral infection of the trophoblast compartment early in gestation could trigger an inflammatory response resulting in altered placental function and consequent suboptimal conditions for fetal growth and development. In this study, we investigated the effect of SARS-CoV-2 infection in early gestation placentae using placenta-derived human trophoblast stem cells (TSCs), a novel in vitro model, and their extravillous trophoblast (EVT) and syncytiotrophoblast (STB) derivatives. SARS-CoV-2 was able to productively replicate in TSC-derived STB and EVT, but not undifferentiated TSCs, which is consistent with the expression of SARS-CoV-2 entry host factors, ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane cellular serine protease) in these cells. In addition, both TSC-derived EVT and STB infected with SARS-CoV-2 elicited an interferon-mediated innate immune response. Combined, these results suggest that placenta-derived TSCs are a robust in vitro model to investigate the effect of SARS-CoV-2 infection in the trophoblast compartment of the early placenta and that SARS-CoV-2 infection in early gestation activates the innate immune response and inflammation pathways. Therefore, placental development could be adversely affected by early SARS-CoV-2 infection by directly infecting the developing differentiated trophoblast compartment, posing a higher risk for poor pregnancy outcomes.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Pregnancy , Female , Humans , COVID-19/metabolism , Trophoblasts/metabolism , Interferons , Placenta
6.
PLoS Biol ; 20(11): e3001845, 2022 11.
Article in English | MEDLINE | ID: mdl-36327326

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was rapidly declared a pandemic by the World Health Organization (WHO). Early clinical symptomatology focused mainly on respiratory illnesses. However, a variety of neurological manifestations in both adults and newborns are now well-documented. To experimentally determine whether SARS-CoV-2 could replicate in and affect human brain cells, we infected iPSC-derived human brain organoids. Here, we show that SARS-CoV-2 can productively replicate and promote death of neural cells, including cortical neurons. This phenotype was accompanied by loss of excitatory synapses in neurons. Notably, we found that the U.S. Food and Drug Administration (FDA)-approved antiviral Sofosbuvir was able to inhibit SARS-CoV-2 replication and rescued these neuronal alterations in infected brain organoids. Given the urgent need for readily available antivirals, these results provide a cellular basis supporting repurposed antivirals as a strategic treatment to alleviate neurocytological defects that may underlie COVID-19- related neurological symptoms.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Infant, Newborn , Humans , Sofosbuvir/pharmacology , Sofosbuvir/therapeutic use , Organoids , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Brain , Cell Death , Synapses
7.
Sci Adv ; 8(40): eabm5859, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36197970

ABSTRACT

Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets. Highly conserved gene coexpression modules across the three species are enriched for IAV infection-induced pathways including cell cycle and interferon (IFN) signaling. TDRD7 is predicted as an IFN-inducible host factor that is up-regulated upon IAV infection in the three species. TDRD7 is required for antiviral IFN response, potentially modulating IFN signaling via the JAK/STAT/IRF9 pathway. Identification of the common and species-specific molecular signatures, networks, and regulators of IAV infection provides insights into host-defense mechanisms and will facilitate the development of novel therapeutic interventions against IAV infection.


Subject(s)
Communicable Diseases , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Antiviral Agents , Ferrets/metabolism , Humans , Influenza A virus/physiology , Influenza, Human/genetics , Interferons/metabolism , Mice , Orthomyxoviridae Infections/genetics , Ribonucleoproteins
8.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35766385

ABSTRACT

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Subject(s)
COVID-19 Drug Treatment , Influenza A virus , Zika Virus Infection , Zika Virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Depsipeptides , Humans , Pandemics , SARS-CoV-2 , Zika Virus Infection/drug therapy
9.
iScience ; 25(5): 104311, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35502318

ABSTRACT

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal and synthetic dosage lethal (SL/SDL) partners of such altered host genes. Pursuing this disparate antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL/SDL with altered host genes. The predicted SL/SDL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. We further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming noninfected healthy cells.

10.
Viruses ; 14(3)2022 03 15.
Article in English | MEDLINE | ID: mdl-35337019

ABSTRACT

The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here, the cellular impact of expressing SARS-CoV-2 viral proteins was studied by global proteomic analysis, and proximity biotinylation (BioID) was used to map the SARS-CoV-2 virus-host interactome in human lung cancer-derived cells. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are associated with SARS-CoV-2 proteins. We have established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Furthermore, we identified 66 high-confidence interactions by comparing this study with previous reports, providing a strong foundation for future follow-up studies. Finally, we cross-referenced candidate interactors with the CLUE drug library to identify potential therapeutics for drug-repurposing efforts. Collectively, these studies provide a valuable resource to uncover novel SARS-CoV-2 biology and inform development of antivirals.


Subject(s)
COVID-19 , SARS-CoV-2 , Biotinylation , Humans , Pandemics , Proteomics
11.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Article in English | MEDLINE | ID: mdl-34709707

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/metabolism , Metabolic Networks and Pathways/genetics , Pandemics , SARS-CoV-2/physiology , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Datasets as Topic , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , RNA, Small Interfering , Sequence Analysis, RNA , Vero Cells , COVID-19 Drug Treatment
12.
Nat Microbiol ; 6(10): 1319-1333, 2021 10.
Article in English | MEDLINE | ID: mdl-34556855

ABSTRACT

The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.


Subject(s)
Autophagy , Immune Evasion , Influenza A virus/physiology , Antiviral Agents/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Host-Pathogen Interactions , Humans , Influenza A virus/pathogenicity , Lysosomes/metabolism , Protein Binding , Viral Matrix Proteins/metabolism , Virus Replication , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
13.
bioRxiv ; 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34580671

ABSTRACT

The novel coronavirus SARS-CoV-2 is responsible for the ongoing COVID-19 pandemic and has caused a major health and economic burden worldwide. Understanding how SARS-CoV-2 viral proteins behave in host cells can reveal underlying mechanisms of pathogenesis and assist in development of antiviral therapies. Here we use BioID to map the SARS-CoV-2 virus-host interactome using human lung cancer derived A549 cells expressing individual SARS-CoV-2 viral proteins. Functional enrichment analyses revealed previously reported and unreported cellular pathways that are in association with SARS-CoV-2 proteins. We have also established a website to host the proteomic data to allow for public access and continued analysis of host-viral protein associations and whole-cell proteomes of cells expressing the viral-BioID fusion proteins. Collectively, these studies provide a valuable resource to potentially uncover novel SARS-CoV-2 biology and inform development of antivirals.

14.
bioRxiv ; 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34545363

ABSTRACT

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal (SL) partners of such altered host genes. Pursuing this antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL with altered host genes. The predicted SL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. Integrating our predictions with the results of these screens, we further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming non-infected cells. Our results are made publicly available, to facilitate their in vivo testing and further validation.

15.
J Virol ; 95(22): e0099621, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34468177

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne pathogen classified by the World Health Organization (WHO) as a public health emergency of international concern in 2016, and it is still identified as a priority disease. Although most infected individuals are asymptomatic or show mild symptoms, a risk of neurologic complications is associated with infection in adults. Additionally, infection during pregnancy is directly linked to microcephaly and other congenital malformations. Since there are no currently available vaccines or approved therapeutics for this virus, there is a critical unmet need in developing treatments to prevent future ZIKV outbreaks. Toward this end, we performed a large-scale cell-based high-content screen of 51,520 chemical compounds to identify potential antiviral drug candidates. The compound (2E)-N-benzyl-3-(4-butoxyphenyl)prop-2-enamide (SBI-0090799) was found to inhibit replication of multiple ZIKV strains and in different cell systems. SBI-0090799 did not affect viral entry or RNA translation but suppressed RNA replication by preventing the formation of the membranous replication compartment. Selection of drug-resistant viruses identified single-amino-acid substitutions in the N-terminal region of nonstructural protein NS4A, arguing this is the likely drug target. These resistance mutations rescued viral RNA replication and restored the formation of the membranous replication compartment. This mechanism of action is similar to clinically approved NS5A inhibitors for hepatitis C virus (HCV). Taken together, SBI-0090799 represents a promising lead candidate for the development of an antiviral treatment against ZIKV infection for the mitigation of severe complications and potential resurgent outbreaks of the virus. IMPORTANCE This study describes the elucidation of (2E)-N-benzyl-3-(4-butoxyphenyl)prop-2-enamide (SBI-0090799) as a selective and potent inhibitor of Zika virus (ZIKV) replication using a high-throughput screening approach. Mapping and resistance studies, supported by electron microscopy observations, indicate that the small molecule is functioning through inhibition of NS4A-mediated formation of ZIKV replication compartments in the endoplasmic reticulum (ER). Intriguingly, this defines a novel nonenzymatic target and chemical matter for the development of a new class of ZIKV antivirals. Moreover, chemical modulation affecting this nonstructural protein mirrors the identification and development of hepatitis C virus (HCV) NS5A inhibitor daclatasvir and its derivatives, similarly interfering with the formation of the viral replication compartment and also targeting a protein with no enzymatic activity, which have been part of a curative strategy for HCV.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Virus Replication/drug effects , Zika Virus Infection/drug therapy , Zika Virus/drug effects , Animals , Astrocytes , Chlorocebus aethiops , Dendritic Cells , HEK293 Cells , Humans , Primary Cell Culture , Vero Cells , Viral Replication Compartments/drug effects
16.
Mol Cell ; 81(11): 2261-2265, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34087174

ABSTRACT

COVID-19 altered our lives and pushed scientific research to operate at breakneck speed, leading to significant breakthroughs in record time. We asked experts in the field about the challenges they faced in transitioning, rapidly but safely, to working on the virus while navigating the shutdown. Their voices converge on the importance of teamwork, forging new collaborations, and working toward a shared goal.


Subject(s)
Biomedical Research , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , Quarantine , SARS-CoV-2 , Humans , Poetry as Topic
17.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33930332

ABSTRACT

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Subject(s)
Antigens, CD/genetics , Host-Pathogen Interactions/genetics , Interferon Regulatory Factors/genetics , Interferon Type I/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/virology , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Gene Expression Regulation , Golgi Apparatus/genetics , Golgi Apparatus/immunology , Golgi Apparatus/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/classification , Interferon Regulatory Factors/immunology , Interferon Type I/immunology , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/immunology , Signal Transduction , Vero Cells , Viral Proteins/chemistry , Viral Proteins/immunology , Virus Internalization , Virus Release/genetics , Virus Release/immunology , Virus Replication/genetics , Virus Replication/immunology
18.
bioRxiv ; 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33532779

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism-targeting as a promising antiviral strategy.

19.
Cell Rep ; 34(2): 108628, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33440148

ABSTRACT

Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. By screening 16 putative sensors involved in sensing of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Further analyses revealed that viral intermediates specifically activate the IFN response through MDA5-mediated sensing. Additionally, we find that IRF3, IRF5, and NF-κB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.


Subject(s)
Immunity, Innate , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Cell Line , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Induced Pluripotent Stem Cells/cytology , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Interferons/genetics , Interferons/metabolism , RNA Helicases/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Signal Transduction , Transcription Factor RelA/metabolism , Virus Replication
20.
Front Immunol ; 12: 810047, 2021.
Article in English | MEDLINE | ID: mdl-35003140

ABSTRACT

Infection with the novel coronavirus, SARS-CoV-2, results in pneumonia and other respiratory symptoms as well as pathologies at diverse anatomical sites. An outstanding question is whether these diverse pathologies are due to replication of the virus in these anatomical compartments and how and when the virus reaches those sites. To answer these outstanding questions and study the spatiotemporal dynamics of SARS-CoV-2 infection a method for tracking viral spread in vivo is needed. We developed a novel, fluorescently labeled, antibody-based in vivo probe system using the anti-spike monoclonal antibody CR3022 and demonstrated that it could successfully identify sites of SARS-CoV-2 infection in a rhesus macaque model of COVID-19. Our results showed that the fluorescent signal from our antibody-based probe could differentiate whole lungs of macaques infected for 9 days from those infected for 2 or 3 days. Additionally, the probe signal corroborated the frequency and density of infected cells in individual tissue blocks from infected macaques. These results provide proof of concept for the use of in vivo antibody-based probes to study SARS-CoV-2 infection dynamics in rhesus macaques.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Fluorescent Antibody Technique/methods , SARS-CoV-2/growth & development , Virus Replication/physiology , Animals , COVID-19/pathology , Cell Line , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Macaca mulatta , Proof of Concept Study , Spike Glycoprotein, Coronavirus/immunology , Viral Load/methods
SELECTION OF CITATIONS
SEARCH DETAIL