Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Am J Hematol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953347

ABSTRACT

Myeloproliferative neoplasms represent a group of clonal hematopoietic disorders of which myelofibrosis (MF) is the most aggressive. In the context of myeloid neoplasms, there is a growing recognition of the dysregulation of immune response and T-cell function as significant contributors to disease progression and immune evasion. We investigated cytotoxic T-cell exhaustion in MF to restore immune response against malignant cells. Increased expression of inhibitory receptors like CTLA-4 was observed on cytotoxic T cells from MF patients together with a reduced secretion of IFNɣ and TNFɑ. CTLA-4 ligands CD80 and CD86 were increased on MF granulocytes and monocytes highlighting a possible role for myeloid cells in suppressing T-cell activation in MF patients. Unlike healthy donors, the activation of cytotoxic T cells from MF patients was attenuated in the presence of myeloid cells and restored when T cells were cultured alone or treated with anti-CTLA-4. Moreover, anti-CTLA-4 treatment promoted elimination of neoplastic monocytes and granulocytes in a co-culture system with cytotoxic T cells. To test CTLA-4 inhibition in vivo, patient-derived xenografts were generated by transplanting MF CD34+ cells and by infusing homologous T cells in NSGS mice. CTLA-4 blockade reduced human myeloid chimerism and led to T-cell expansion in spleen and bone marrow. Overall, these findings shed light on T-cell dysfunction in MF and suggest that CTLA-4 blockade can boost the cytotoxic T cell-mediated immune response against tumor cells.

2.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687825

ABSTRACT

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Subject(s)
Hippocampus , Intracellular Signaling Peptides and Proteins , Neuronal Plasticity , Phosphoproteins , Protein Serine-Threonine Kinases , Receptors, AMPA , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Humans , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Mice , Neuronal Plasticity/physiology , Hippocampus/metabolism , Hippo Signaling Pathway , Serine-Threonine Kinase 3 , Signal Transduction , Memory/physiology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Hepatocyte Growth Factor/metabolism , Mice, Inbred C57BL , Alzheimer Disease/metabolism , Phosphorylation , Neurons/metabolism
3.
Obes Surg ; 34(4): 1366-1375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430321

ABSTRACT

Increasing evidence suggests that bariatric surgery (BS) patients are at risk for substance abuse disorders (SUD). The purpose of this systematic review and meta-analysis was to determine the relationship between BS and the development of new-onset substance abuse disorder (SUDNO) in bariatric patients. On October 31, 2023, we reviewed the scientific literature following PRISMA guidelines. A total of 3242 studies were analyzed, 7 met the inclusion criteria. The pooled incidence of SUDNO was 4.28%. Patients' characteristics associated with SUDNO included preoperative mental disorders, high pre-BS BMI, and public health insurance. Surgical factors associated with new SUDNOs included severe complications in the peri- or postoperative period. The occurrence of SUDNOs is a non-negligeable complication after BS. Predisposing factors may be identified and preventive actions undertaken.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Substance-Related Disorders , Humans , Obesity, Morbid/surgery , Substance-Related Disorders/complications , Substance-Related Disorders/epidemiology , Postoperative Period , Preoperative Period
4.
Nat Commun ; 15(1): 2635, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528004

ABSTRACT

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.


Subject(s)
Alzheimer Disease , Autophagy , Chromosomal Proteins, Non-Histone , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Animals , Female , Humans , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Autophagy/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cytokines/metabolism , Inflammasomes/metabolism , Microglia/metabolism , Neuroinflammatory Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
7.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066393

ABSTRACT

High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1ß release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1ß release, initiating an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D (GSDMD)-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of postmortem brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing new mechanistic insight into the biology of neuroinflammation.

8.
Front Public Health ; 11: 1108546, 2023.
Article in English | MEDLINE | ID: mdl-37033069

ABSTRACT

Background and objective: The fourth dose the COVID-19 vaccine was first proposed to immunocompromised patients. The aim of the article is to systematically review the literature and report the humoral response and outcomes after the fourth dose administration in people with impaired immune system. Methods: Published studies on the humoral response, efficacy and safety of the fourth dose of the COVID-19 vaccine were analyzed in various settings of immunocompromised patients. We conducted systematic searches of PubMed, Cochrane Library and WHO COVID-19 Research Database for series published through January 31, 2023, using the search terms "fourth dose" or "second booster" or "4th dose" and "Coronavirus" or "COVID-19" or "SARS-CoV-2." All articles were selected according to the PRISMA guidelines. Results: A total of 24 articles including 2,838 patients were comprised in the systematic review. All the studies involved immunocompromised patients, including solid organ transplant recipients, patients with autoimmune rheumatic disease, patients with human immunodeficiency virus (HIV) and patients with blood cancers or diseases. Almost all patients received BNT162b2 or mRNA-1273 as fourth dose. All the studies demonstrated the increase of antibody titers after the fourth dose, both in patients who had a serological strong response and in those who had a weak response after the third dose. No serious adverse events after the 4th dose have been reported by 13 studies. COVID-19 infection after the fourth dose ranged from 0 to 21%. Conclusion: The present review highlights the importance of the fourth dose of covid-19 vaccines for immunocompromised patients. Across the included studies, a fourth dose was associated with improved seroconversion and antibody titer levels. In particular, a fourth dose was associated with increasing immunogenicity in organ transplant recipients and patients with hematological cancers, with a very low rate of serious side effects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , Immunocompromised Host
9.
Acta Neuropathol ; 145(4): 439-459, 2023 04.
Article in English | MEDLINE | ID: mdl-36729133

ABSTRACT

Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.


Subject(s)
Mental Disorders , Neocortex , Humans , Mental Disorders/genetics , Aging/genetics , Neurons , Genotype , Polymorphism, Single Nucleotide
10.
Clin Exp Med ; 23(4): 1171-1180, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36495369

ABSTRACT

The trajectory of B cell development goes through subsequent steps governed by complex genetic programs, strictly regulated by multiple transcription factors. Interferon regulatory factor 4 (IRF4) regulates key points from pre-B cell development and receptor editing to germinal center formation, class-switch recombination and plasma cell differentiation. The pleiotropic ability of IRF4 is mediated by its "kinetic control", allowing different IRF4 expression levels to activate distinct genetic programs due to modulation of IRF4 DNA-binding affinity. IRF4 is implicated in B cell malignancies, acting both as tumor suppressor and as tumor oncogene in different types of precursors and mature B cell neoplasia. Here, we summarize the complexity of IRF4 functions related to different DNA-binding affinity, multiple IRF4-specific target DNA motif, and interactions with transcriptional partners. Moreover, we describe the unique role of IRF4 in acute leukemias and B cell mature neoplasia, focusing on pathogenetic implications and possible therapeutic strategies in multiple myeloma and chronic lymphocytic leukemia.


Subject(s)
Germinal Center , Neoplasms , Humans , Cell Differentiation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , DNA/metabolism
12.
Cell Rep ; 41(10): 111766, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476872

ABSTRACT

Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.


Subject(s)
Proteomics , Receptors, AMPA , Animals , Mice
13.
Front Immunol ; 13: 832263, 2022.
Article in English | MEDLINE | ID: mdl-35371054

ABSTRACT

The indoleamine 2,3-dioxygenase 1 (IDO1) metabolic circuitry, comprising the first tryptophan (Trp) catabolite L-kynurenine (Kyn) and the aryl hydrocarbon receptor (AHR), has emerged as a mechanism of cancer immune evasion. Here, we investigated the functional role of the IDO1/Kyn/AHR axis in chronic lymphocytic leukemia (CLL). Our data show that CLL cells expressed an active form of the IDO1 enzyme and microenvironmental stimuli can positively modulate its expression. Interferon (IFN)-γ induces IDO1 expression through the Jak/STAT1 pathway and mediates Kyn production concomitantly with Trp consumption in CLL-conditioned media, while INCB018424 (ruxolitinib), a JAK1/2 inhibitor, impaired both effects. To characterize the involvement of IDO1 in leukemic cell maintenance, we overexpressed IDO1 by vector transfection measuring enhanced resistance to spontaneous apoptosis. IDO1 pro-survival influence was confirmed by treating CLL cells with Kyn, which mediated the increase of induced myeloid leukemia cell differentiation protein (MCL1). Conversely, AHR silencing or its blockade via CH-223191 improved the apoptosis of leukemic clones and mitigated MCL1 expression. Moreover, Kyn-treated CLL cells are less affected by the pro-apoptotic effect of ABT-199 (venetoclax), while CH-223191 showed synergistic/additive cytotoxicity with this drug. Lastly, targeting directly MCL1 in CLL cells with AMG-176, we abrogate the pro-survival effect of Kyn. In conclusion, our data identify IDO1/Kyn/AHR signaling as a new therapeutic target for CLL, describing for the first time its role in CLL pathobiology.


Subject(s)
Kynurenine , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism
14.
Cells ; 11(6)2022 03 16.
Article in English | MEDLINE | ID: mdl-35326454

ABSTRACT

In recent years, the introduction of new drugs targeting Bruton's tyrosine kinase (BTK) has allowed dramatic improvement in the prognosis of patients with chronic lymphocytic leukemia (CLL) and other B-cell neoplasms. Although these small molecules were initially considered less immunosuppressive than chemoimmunotherapy, an increasing number of reports have described the occurrence of unexpected opportunistic fungal infections, in particular invasive aspergillosis (IA). BTK represents a crucial molecule in several signaling pathways depending on different immune receptors. Based on a variety of specific off-target effects on innate immunity, namely on neutrophils, monocytes, pulmonary macrophages, and nurse-like cells, ibrutinib has been proposed as a new host factor for the definition of probable invasive pulmonary mold disease. The role of platelets in the control of fungal growth, through granule-dependent mechanisms, was described in vitro almost two decades ago and is, so far, neglected by experts in the field of clinical management of IA. In the present study, we confirm the antifungal role of platelets, and we show, for the first time, that the exposure to BTK inhibitors impairs several immune functions of platelets in response to Aspergillus fumigatus, i.e., the ability to adhere to conidia, activation (as indicated by reduced expression of P-selectin), and direct killing activity. In conclusion, our experimental data suggest that antiplatelet effects of BTK inhibitors may contribute to an increased risk for IA in CLL patients.


Subject(s)
Aspergillosis , Invasive Fungal Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/metabolism , Blood Platelets/metabolism , Humans , Invasive Fungal Infections/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use
16.
Am J Psychiatry ; 179(5): 375-387, 2022 05.
Article in English | MEDLINE | ID: mdl-34698522

ABSTRACT

OBJECTIVE: A fine-tuned balance of glucocorticoid receptor (GR) activation is essential for organ formation, with disturbances influencing many health outcomes. In utero, glucocorticoids have been linked to brain-related negative outcomes, with unclear underlying mechanisms, especially regarding cell-type-specific effects. An in vitro model of fetal human brain development, induced human pluripotent stem cell (hiPSC)-derived cerebral organoids, was used to test whether cerebral organoids are suitable for studying the impact of prenatal glucocorticoid exposure on the developing brain. METHODS: The GR was activated with the synthetic glucocorticoid dexamethasone, and the effects were mapped using single-cell transcriptomics across development. RESULTS: The GR was expressed in all cell types, with increasing expression levels through development. Not only did its activation elicit translocation to the nucleus and the expected effects on known GR-regulated pathways, but also neurons and progenitor cells showed targeted regulation of differentiation- and maturation-related transcripts. Uniquely in neurons, differentially expressed transcripts were significantly enriched for genes associated with behavior-related phenotypes and disorders. This human neuronal glucocorticoid response profile was validated across organoids from three independent hiPSC lines reprogrammed from different source tissues from both male and female donors. CONCLUSIONS: These findings suggest that excessive glucocorticoid exposure could interfere with neuronal maturation in utero, leading to increased disease susceptibility through neurodevelopmental processes at the interface of genetic susceptibility and environmental exposure. Cerebral organoids are a valuable translational resource for exploring the effects of glucocorticoids on early human brain development.


Subject(s)
Induced Pluripotent Stem Cells , Receptors, Glucocorticoid , Brain/metabolism , Dexamethasone/metabolism , Dexamethasone/pharmacology , Female , Glucocorticoids/adverse effects , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Organoids/metabolism , Pregnancy , Receptors, Glucocorticoid/genetics
18.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502069

ABSTRACT

The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.


Subject(s)
Antigens, Neoplasm/immunology , Leukemia, Myeloid, Acute/immunology , Nuclear Proteins/genetics , T-Lymphocytes/immunology , Animals , Humans , Immunotherapy/methods , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Nuclear Proteins/immunology , Nucleophosmin
19.
Cancers (Basel) ; 13(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34572809

ABSTRACT

Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCR-based techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies-from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL) to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)-providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...