Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 33(24)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35263731

ABSTRACT

We report on the influence of the liquid droplet composition on the Sn incorporation in GeSn nanowires (NWs) grown by the vapor-liquid-solid (VLS) mechanism with different catalysts. The variation of the NW growth rate and morphology with the growth temperature is investigated and 400 °C is identified as the best temperature to grow the longest untapered NWs with a growth rate of 520 nm min-1. When GeSn NWs are grown with pure Au droplets, we observe a core-shell like structure with a low Sn concentration of less than 2% in the NW core regardless of the growth temperature. We then investigate the impact of adding different fractions of Ag, Al, Ga and Si to Au catalyst on the incorporation of Sn. A significant improvement of Sn incorporation up to 9% is obtained using 75:25 Au-Al catalyst, with a high degree of spatial homogeneity across the NW volume. Thermodynamic model based on the energy minimization at the solid-liquid interface is developed, showing a good correlation with the data. These results can be useful for obtaining technologically important GeSn material with a high Sn content and, more generally, for tuning the composition of VLS NWs in other material systems.

2.
ACS Appl Mater Interfaces ; 12(35): 39870-39880, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805854

ABSTRACT

In recent years, plasma enhanced atomic layer deposition (PEALD) has emerged as a key method for the growth of conformal and homogeneous aluminum nitride (AlN) films at the nanoscale. In this work, the utilized PEALD reactor was equipped not only with a traditional remote Inductively Coupled Plasma source but also with an innovative additional power supply connected to the substrate holder. Thus, we investigate here the substrate biasing effect on AlN film quality deposited on (100) silicon. We report that by adjusting the ion energy via substrate biasing, the AlN film quality can be significantly improved. Indeed, compared to films commonly deposited without bias, AlN deposited with a platen power of 5 W displays a 14% increase in the number of N-Al bonds according to X-ray spectroscopy analysis. Moreover, after having integrated them into Metal-AlN-Si capacitors, the 5 W AlN film exhibits a permittivity increase from 4.5 to 7.0 along with a drastic drop of leakage current density of more than 5 orders of magnitude. The use of substrate biasing during PEALD is thereby a promising strategy for the improvement of AlN film quality.

3.
ACS Appl Bio Mater ; 3(12): 8402-8413, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019612

ABSTRACT

In this work, we present an innovative strategy for the grafting of an antibacterial agent onto nanocellulose materials in supercritical carbon dioxide (scCO2). Dense cellulose nanofibril (CNF) nanopapers were prepared and subsequently functionalized in supercritical carbon dioxide with an aminosilane, N-(6-aminohexyl)aminopropyltrimethoxysilane (AHA-P-TMS). Surface characterization (X-ray photoelectron spectroscopy, contact angle, ζ-potential analysis) evidenced the presence of the aminosilane. The results show that the silane conformation depends on the curing process: a nonpolycondensed conformation of grafted silane with the amino groups facing outwards was favored by curing in an oven, while the curing step performed in scCO2 yielded CNF structures with the alkyl chain facing outwards. The grafted nanopapers exhibited antibacterial activity, and no antibacterial agent was released into the media. Furthermore, these materials proved to benefit from low cytotoxicity. This study offers a proof of concept for the covalent grafting of active species on nanocellulose structures and the control of aminosilane orientation using a green and controlled approach. These newly designed materials could be used for their antibacterial activity in the biomedical field. Thus, perspectives for topical administration and design of wound dressing could be envisaged.

4.
J Phys Chem C Nanomater Interfaces ; 121(11): 5891-5904, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28676835

ABSTRACT

Understanding the structural and electronic factors governing the efficiency of dye-sensitized NiO photocathodes is essential to optimize solar fuel production in photoelectrochemical cells (PECs). For these purpose, three different ruthenium dyes, bearing either two or four methylphosphonate anchoring groups and either a bipyridine or a dipyridophenazine ancillary ligand, were synthesized and grafted onto NiO films. These photoelectrodes were fully characterized by XPS, ToF-SIMS, UV-vis absorption, time-resolved emission and femtosecond transient absorption spectroscopies. Increasing the number of anchoring groups from two to four proved beneficial for the grafting efficiency. No significant modification of the electronic properties compared to the parent photosensitizer was observed, in accordance with the non-conjugated nature of the grafted linker. The photoelectrochemical activity of the dye-sensitized NiO electrodes was assessed in fully aqueous medium in the presence of an irreversible electron acceptor and photocurrents reaching 190 µA.cm-2 were recorded. The transient absorption study revealed the presence of two charge recombination pathways for each of the sensitizers and evidenced a stabilized charge separated state in the dppz derivative, supporting its superior photoelectrochemical activity.

5.
ACS Appl Mater Interfaces ; 9(23): 20179-20187, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28534397

ABSTRACT

Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 1020 cm-3. Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

6.
Ultramicroscopy ; 183: 94-98, 2017 12.
Article in English | MEDLINE | ID: mdl-28390735

ABSTRACT

HfO2-based resistive oxide memories are studied by core-level spectromicroscopy using a laboratory-based X-ray photoelectron emission microscope (XPEEM). After forming, the top electrode is thinned to about 1 nm for the XPEEM analysis, making the buried electrode/HfO2 interface accessible whilst preserving it from contamination. The results are obtained in the true photoemission channel mode from individual memory cells (5 × 5 µm) excited by low-flux laboratory X-rays, in contrast to most studies employing the X-ray absorption channel using potentially harmful bright synchrotron X-rays. Analysis of the local Hf 4f, O 1s and Ti 2p core level spectra yields valuable information on the chemistry of the forming process in a single device, and in particular the central role of oxygen vacancies thanks to the spectromicroscopic approach.

7.
Chemphyschem ; 10(6): 963-71, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19263452

ABSTRACT

The missing link: Ferrocene and porphyrin monolayers are tethered on silicon surfaces with short (see picture, left) or long (right) linkers. Electron transfer to the silicon substrate is faster for monolayers with a short linker.Ferrocene and porphyrin derivatives are anchored on Si(100) surfaces through either a short two-carbon or a long 11-carbon linker. The two tether lengths are obtained by using two different grafting procedures: a single-step hydrosilylation is used for the short linker, whereas for the long linker a multistep process involving a 1,3-dipolar cycloaddition is conducted, which affords ferrocene-triazole-(CH(2))(11)-Si or Zn(porphyrin)-triazole-(CH(2))(11)-Si links to the surface. The modified surfaces are characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Cyclic voltammetry experiments show that the redox activity of the tethered ferrocene or porphyrin is maintained for both linker types. Microelectrode capacitor devices incorporating these modified Si(100) surfaces are designed, and their capacitance-voltage (C-V) and conductance-voltage (G-V) profiles are investigated. Capacitance and conductance peaks are observed, which indicates efficient charge transfer between the redox-active monolayers and the electrode surface. Slower electron transfer between the ferrocene or porphyrin monolayer and the electrode surface is observed for the longer linker, which suggests that by adjusting the linker length, the electrical properties of the device, such as charging and discharging kinetics and retention time, could be tuned.


Subject(s)
Ferrous Compounds/chemistry , Porphyrins/chemistry , Silicon/chemistry , Electric Capacitance , Electron Transport , Metallocenes , Microelectrodes , Oxidation-Reduction , Potentiometry , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL