Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 33(31): e2100421, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34165833

ABSTRACT

Solution-processed organic field-effect transistors (OFETs) have attracted great interest due to their potential as logic devices for bendable and flexible electronics. In relation to n-channel structures, soluble fullerene semiconductors have been widely studied. However, they have not yet met the essential requirements for commercialization, primarily because of low charge carrier mobility, immature large-scale fabrication processes, and insufficient long-term operational stability. Interfacial engineering of the carrier-injecting source/drain (S/D) electrodes has been proposed as an effective approach to improve charge injection, leading also to overall improved device characteristics. Here, it is demonstrated that a non-conjugated neutral dipolar polymer, poly(2-ethyl-2-oxazoline) (PEOz), formed as a nanodot structure on the S/D electrodes, enhances electron mobility in n-channel OFETs using a range of soluble fullerenes. Overall performance is especially notable for (C60 -Ih )[5,6]fullerene (C60 ) and (C70 -D5h(6) )[5,6]fullerene (C70 ) blend films, with an increase from 0.1 to 2.1 cm2 V-1 s-1 . The high relative mobility and eighteen-fold improvement are attributed not only to the anticipated reduction in S/D electrode work function but also to the beneficial effects of PEOz on the formation of a face-centered-cubic C60 :C70 co-crystal structure within the blend films.

2.
Ultramicroscopy ; 221: 113189, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33360480

ABSTRACT

Electron ptychography is a 4-D STEM phase-contrast imaging technique with applications to light-element and beam-sensitive materials. Although the electron dose (electrons incident per unit area on the sample) is the primary figure of merit for imaging beam-sensitive materials, it is also necessary to consider the contrast transfer properties of the imaging technique. Here, we explore the contrast transfer properties of electron ptychography. The contrast transfer of focused-probe, non-iterative electron ptychography using the single-side-band (SSB) method is demonstrated experimentally. The band-pass nature of the phase-contrast transfer function (PCTF) for SSB ptychography places strict limitations on the probe convergence semi-angles required to resolve specific sample features with high contrast. The PCTF of the extended ptychographic iterative engine (ePIE) is broader than that for SSB ptychography, although when both high and low spatial frequencies are transferred, band-pass filtering is required to remove image artefacts. Normalisation of the transfer function with respect to the noise level shows that the transfer window is increased while avoiding noise amplification. Avoiding algorithms containing deconvolution steps may also increase the dose-efficiency of ptychographic phase reconstructions.

3.
J Am Chem Soc ; 141(50): 19616-19624, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31747756

ABSTRACT

It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.

4.
Phys Rev Lett ; 122(6): 066101, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822049

ABSTRACT

Understanding nanostructures down to the atomic level is the key to optimizing the design of advanced materials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.

5.
Ultramicroscopy ; 196: 131-135, 2019 01.
Article in English | MEDLINE | ID: mdl-30366318

ABSTRACT

Radiation damage places a fundamental limitation on the ability of microscopy to resolve many types of materials at high resolution. Here we evaluate the dose efficiency of phase contrast imaging with electron ptychography. The method is found to be far more resilient to temporal incoherence than conventional and spherical aberration optimized phase contrast imaging, resulting in significantly greater clarity at a given dose. This robustness is explained by the presence of achromatic lines in the four dimensional ptychographic dataset.

6.
Nano Lett ; 18(11): 6850-6855, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30257093

ABSTRACT

Imaging the complete atomic structure of materials, including light elements, with minimal beam-induced damage of the sample is a long-standing challenge in electron microscopy. Annular bright-field scanning transmission electron microscopy is often used to image elements with low atomic numbers, but due to its low efficiency and high sensitivity to precise imaging parameters it comes at the price of potentially significant beam damage. In this paper, we show that electron ptychography is a powerful technique to retrieve reconstructed phase images that provide the full structure of beam-sensitive materials containing light and heavy elements. Due to its much higher efficiency, we can reduce the beam currents used down to the subpicoampere range. Electron ptychography also allows residual lens aberrations to be corrected at the postprocessing stage, which avoids the need for fine-tuning of the probe that would result in further beam damage and provides aberration-free reconstructed phase images. We have used electron ptychography to obtain structural information from aberration-free reconstructed phase images in the technologically relevant lithium-rich transition metal oxides at different states of charge. We can unambiguously determine the position of the lithium and oxygen atomic columns while amorphization of the surface, formation of beam-induced surface reconstruction layers, or migration of transition metals to the alkali layers are drastically reduced.

7.
Nat Commun ; 8(1): 163, 2017 07 31.
Article in English | MEDLINE | ID: mdl-28761117

ABSTRACT

Knowing the three-dimensional structural information of materials at the nanometer scale is essential to understanding complex material properties. Electron tomography retrieves three-dimensional structural information using a tilt series of two-dimensional images. In this paper, we report an alternative combination of electron ptychography with the inverse multislice method. We demonstrate depth sectioning of a nanostructured material into slices with 0.34 nm lateral resolution and with a corresponding depth resolution of about 24-30 nm. This three-dimensional imaging method has potential applications for the three-dimensional structure determination of a range of objects, ranging from inorganic nanostructures to biological macromolecules.Three-dimensional ptychographic imaging with electrons has remained a challenge because, unlike X-rays, electrons are easily scattered by atoms. Here, Gao et al. extend multi-slice methods to electrons in the multiple scattering regime, paving the way to nanometer-scale 3D structure determination with electrons.

8.
Ultramicroscopy ; 180: 173-179, 2017 09.
Article in English | MEDLINE | ID: mdl-28434783

ABSTRACT

Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Therefore coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light and heavy elements at atomic resolution. In this work, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.

9.
Phys Rev Lett ; 116(24): 246101, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27367396

ABSTRACT

The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

10.
ACS Nano ; 10(8): 7604-11, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27391548

ABSTRACT

One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties.

11.
IUCrJ ; 3(Pt 1): 71-83, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26870383

ABSTRACT

The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...