Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Infect Dis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622836

ABSTRACT

Cryptococcus neoformans (Cn) is an opportunistic fungus that causes severe central nervous system (CNS) disease in immunocompromised individuals. Brain parenchyma invasion requires fungal traversal of the blood-brain barrier. In this study, we describe that Cn alters the brain endothelium by activating small GTPase RhoA, causing reorganization of the actin cytoskeleton and tight junction modulation to regulate endothelial barrier permeability. We confirm that the main fungal capsule polysaccharide glucuronoxylomannan is responsible for these alterations. We reveal a therapeutic benefit of RhoA inhibition by CCG-1423 in vivo. RhoA inhibition prolonged survival and reduced fungal burden in a murine model of disseminated cryptococcosis, supporting the therapeutic potential targeting RhoA in the context of cryptococcal infection. We examine the complex virulence of Cn in establishing CNS disease, describing cellular components of the brain endothelium that may serve as molecular targets for future antifungal therapies to alleviate the burden of life-threatening cryptococcal CNS infection.

3.
Curr Opin Microbiol ; 76: 102397, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898052

ABSTRACT

Fungal infections of the central nervous system (FI-CNS) are a problematic and important medical challenge considering that those most affected are immunocompromised. Individuals with systemic cryptococcosis (67-84%), candidiasis (3-64%), blastomycosis (40%), coccidioidomycosis (25%), histoplasmosis (5-20%), mucormycosis (12%), and aspergillosis (4-6%) are highly susceptible to develop CNS involvement, which often results in high mortality (15-100%) depending on the mycosis and the affected immunosuppressed population. Current antifungal drugs are limited, prone to resistance, present host toxicity, and show reduced brain penetration, making FI-CNS very difficult to treat. Given these limitations and the rise in FI-CNS, there is a need for innovative strategies for therapeutic development and treatments to manage FI-CNS in at-risk populations. Here, we discuss standards of care, antifungal drug candidates, and novel molecular targets in the blood-brain barrier, which is a protective structure that regulates movement of particles in and out of the brain, to prevent and combat FI-CNS.


Subject(s)
Central Nervous System Infections , Coccidioidomycosis , Cryptococcosis , Histoplasmosis , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/microbiology , Histoplasmosis/microbiology , Coccidioidomycosis/drug therapy , Coccidioidomycosis/microbiology , Cryptococcosis/drug therapy , Central Nervous System Infections/drug therapy
4.
J Fungi (Basel) ; 9(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37755051

ABSTRACT

In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.

5.
Antimicrob Agents Chemother ; 67(10): e0045923, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37750714

ABSTRACT

Cryptococcus neoformans (Cn) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Meningitis, Cryptococcal , Meningoencephalitis , Humans , Mice , Animals , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/microbiology , Antifungal Agents/therapeutic use , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Amphotericin B/therapeutic use , Flucytosine/therapeutic use , Meningoencephalitis/drug therapy
6.
Future Microbiol ; 18: 1095-1117, 2023 11.
Article in English | MEDLINE | ID: mdl-37750748

ABSTRACT

Fungal infections are a serious problem affecting many people worldwide, creating critical economic and medical consequences. Fungi are ubiquitous and can cause invasive diseases in individuals mostly living in developing countries or with weakened immune systems, and antifungal drugs currently available have important limitations in tolerability and efficacy. In an effort to counteract the high morbidity and mortality rates associated with invasive fungal infections, various approaches are being utilized to discover and develop new antifungal agents. This review discusses the challenges posed by fungal infections, outlines different methods for developing antifungal drugs and reports on the status of drugs currently in clinical trials, which offer hope for combating this serious global problem.


Subject(s)
Invasive Fungal Infections , Mycoses , Humans , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Mycoses/microbiology , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Fungi
7.
bioRxiv ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090670

ABSTRACT

Cryptococcus neoformans ( Cn ) is an encapsulated neurotropic fungal pathogen and the causative agent of cryptococcal meningoencephalitis (CME) in humans. Recommended treatment for CME is Amphotericin B (AmpB) and 5-fluorocytosine (5-FC). Though effective, AmpB has displayed numerous adverse side effects due to its potency and nephrotoxicity, prompting investigation into alternative treatments. Palmitoylethanolamide (PEA) is an immunomodulatory compound capable of promoting neuroprotection and reducing inflammation. To investigate the efficacy of PEA as a therapeutic alternative for CME, we intracerebrally infected mice with Cn and treated them with PEA or AmpB alone or in combination. Our results demonstrate that PEA alone does not significantly prolong survival nor reduce fungal burden, but when combined with AmpB, PEA exerts an additive effect and promotes both survivability and fungal clearance. However, we compared this combination to traditional AmpB and 5-FC treatment in a survivability study and observed lower efficacy. Overall, our study revealed that PEA alone is not effective as an antifungal agent in the treatment of CME. Importantly, we describe the therapeutic capability of PEA in the context of Cn infection and show that its immunomodulatory properties may confer limited protection when combined with an effective fungicidal agent.

8.
PLoS Pathog ; 19(4): e1010941, 2023 04.
Article in English | MEDLINE | ID: mdl-37115795

ABSTRACT

The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis, with the highest rate of disease in patients with AIDS or immunosuppression. This microbe enters the human body via inhalation of infectious particles. C. neoformans capsular polysaccharide, in which the major component is glucuronoxylomannan (GXM), extensively accumulates in tissues and compromises host immune responses. C. neoformans travels from the lungs to the bloodstream and crosses to the brain via transcytosis, paracytosis, or inside of phagocytes using a "Trojan horse" mechanism. The fungus causes life-threatening meningoencephalitis with high mortality rates. Hence, we investigated the impact of intranasal exogenous GXM administration on C. neoformans infection in C57BL/6 mice. GXM enhances cryptococcal pulmonary infection and facilitates fungal systemic dissemination and brain invasion. Pre-challenge of GXM results in detection of the polysaccharide in lungs, serum, and surprisingly brain, the latter likely reached through the nasal cavity. GXM significantly alters endothelial cell tight junction protein expression in vivo, suggesting significant implications for the C. neoformans mechanisms of brain invasion. Using a microtiter transwell system, we showed that GXM disrupts the trans-endothelial electrical resistance, weakening human brain endothelial cell monolayers co-cultured with pericytes, supportive cells of blood vessels/capillaries found in the blood-brain barrier (BBB) to promote C. neoformans BBB penetration. Our findings should be considered in the development of therapeutics to combat the devastating complications of cryptococcosis that results in an estimated ~200,000 deaths worldwide each year.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Meningitis, Cryptococcal , Animals , Mice , Humans , Cryptococcus neoformans/metabolism , Rodentia , Mice, Inbred C57BL , Cryptococcosis/microbiology , Polysaccharides/metabolism , Lung/metabolism
9.
Microbiol Spectr ; : e0483122, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36853055

ABSTRACT

Biofilm formation is important for microbial survival in hostile environments and a phenotype that provides microorganisms with antimicrobial resistance. Zinc oxide (ZnO) and Zinc sulfide (ZnS) nanoparticles (NPs) present potential antimicrobial properties for biomedical and food industry applications. Here, we aimed to analyze, for the first time, the bactericidal and antibiofilm activity of ZnS NPs against Staphylococcus aureus, Klebsiella oxytoca, and Pseudomonas aeruginosa, all medically important bacteria in developed countries. We compared ZnS NPs antimicrobial activity to ZnO NPs, which have been extensively studied. Using the colorimetric XTT reduction assay to observe the metabolic activity of bacterial cells and the crystal violet assay to measure biofilm mass, we demonstrated that ZnS and ZnO had similar efficacy in killing planktonic bacterial cells and reducing biofilm formation, with S. aureus being more susceptible to both therapeutics than K. oxytoca and P. aeruginosa. Crystal violet staining and confocal microscopy validated that Zn NPs inhibit biofilm formation and cause architectural damage. Our findings provide proof of principle that ZnS NPs have antibiofilm activity, and can be potentially used in medical and food industry applications, such as treatment of wound infections or package coating for food preservation. IMPORTANCE Zinc (Zn)-based nanoparticles (NPs) can be potentially used in medical and food preservation applications. As proof of principle, we investigated the bactericidal and antibiofilm activity of zinc oxide (ZnO) and zinc sulfide (ZnS) NPs against medically important bacteria. Zn-based NPs were similarly effective in killing planktonic and biofilm-associated Staphylococcus aureus, Klebsiella oxytoca, and Pseudomonas aeruginosa cells. However, S. aureus was more susceptible to these investigational therapeutics. Although further studies are warranted, our findings suggest the possibility of future use of Zn-based NPs in the treatment of skin infections or preservation of food.

10.
mBio ; 14(2): e0264022, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36786559

ABSTRACT

Cryptococcus neoformans (Cn) is an opportunistic, encapsulated, yeast-like fungus that causes severe meningoencephalitis, especially in countries with high HIV prevalence. In addition to its well-known polysaccharide capsule, Cn has other virulence factors such as phospholipases, a heterogeneous group of enzymes that hydrolyze ester linkages in glycerophospholipids. Phospholipase B (PLB1) has been demonstrated to play a key role in Cn pathogenicity. In this study, we used a PLB1 mutant (plb1) and its reconstituted strain (Rec1) to assess the importance of this enzyme on Cn brain infection in vivo and in vitro. Mice infected with the plb1 strain survive significantly longer, have lower peripheral and central nervous system (CNS) fungal loads, and have fewer and smaller cryptococcomas or biofilm-like brain lesions compared to H99- and Rec1-infected animals. PLB1 causes extensive brain tissue damage and changes microglia morphology during cryptococcal disease, observations which can have important implications in patients with altered mental status or dementia as these manifestations are related to poorer survival outcomes. plb1 cryptococci are significantly more phagocytosed and killed by NR-9460 microglia-like cells. plb1 cells have altered capsular polysaccharide biophysical properties which impair their ability to stimulate glial cell responses or morphological changes. Here, we provide significant evidence demonstrating that Cn PLB1 is an important virulence factor for fungal colonization of and survival in the CNS as well as in the progression of cryptococcal meningoencephalitis. These findings may potentially help fill in a gap of knowledge in our understanding of cerebral cryptococcosis and provide novel research avenues in Cn pathogenesis. IMPORTANCE Cryptococcal meningoencephalitis (CME) is a serious disease caused by infection by the neurotropic fungal pathogen Cryptococcus neoformans. Due to the increasing number of cases in HIV-infected individuals, as well as the limited therapies available, investigation into potential targets for new therapeutics has become critical. Phospholipase B is an enzyme synthesized by Cn that confers virulence to the fungus through capsular enlargement, immunomodulation, and intracellular replication. In this study, we examined the properties of PLB1 by comparing infection of a Cn PLB1 mutant strain with both the wild-type and a PLB1-reconstituted strain. We show that PLB1 augments the survival and proliferation of the fungus in the CNS and strengthens virulence by modulating the immune response and enhancing specific biophysical properties of the fungus. PLB1 expression causes brain tissue damage and impacts glial cell functions, which may be responsible for the dementia observed in patients which may persist even after resolving from CME. The implications of PLB1 inhibition reveal its involvement in Cn infection and suggest that it may be a possible molecular target in the development of antifungal therapies. The results of this study support additional investigation into the mechanism of PLB1 to further understand the intricacies of cerebral Cn infection.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Dementia , HIV Infections , Meningoencephalitis , Animals , Mice , Cryptococcus neoformans/metabolism , Lysophospholipase/metabolism , Cryptococcosis/microbiology , Central Nervous System/pathology , Meningoencephalitis/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism , HIV Infections/complications
11.
PLoS Negl Trop Dis ; 17(1): e0011068, 2023 01.
Article in English | MEDLINE | ID: mdl-36656900

ABSTRACT

Infection of the Central Nervous System (CNS) by the encapsulated fungus Cryptococcus neoformans can lead to high mortality meningitis, most commonly in immunocompromised patients. While the mechanisms by which the fungus crosses the blood-brain barrier to initiate infection in the CNS are well recognized, there are still substantial unanswered questions about the disease progression once the fungus is established in the brain. C. neoformans is characterized by a glucuronoxylomannan (GXM)-rich polysaccharide capsule which has been implicated in immune evasion, but its role during the host CNS infection needs further elucidation. Therefore, the present study aims to examine these key questions about the mechanisms underlying cryptococcal meningitis progression and the impact of fungal GXM release by using an intracerebral rodent infection model via stereotaxic surgery. After developing brain infection, we analyzed distinct brain regions and found that while fungal load and brain weight were comparable one-week post-infection, there were region-specific histopathological (with and without brain parenchyma involvement) and disease manifestations. Moreover, we also observed a region-specific correlation between GXM accumulation and glial cell recruitment. Furthermore, mortality was associated with the presence of subarachnoid hemorrhaging and GXM deposition in the meningeal blood vessels and meninges in all regions infected. Our results show that using the present infection model can facilitate clinical and neuropathological observations during the progression of neurocryptococcosis. Importantly, this mouse model can be used to further investigate disease progression as it develops in humans.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Meningitis, Cryptococcal , Humans , Animals , Mice , Cryptococcosis/microbiology , Central Nervous System , Meningitis, Cryptococcal/microbiology , Polysaccharides , Disease Models, Animal , Disease Progression
12.
Basic Clin Pharmacol Toxicol ; 133(5): 496-507, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36710070

ABSTRACT

Methamphetamine is a widely abused psychostimulant and one of the main targets of dopamine transporter (DAT). Methamphetamine reduces DAT-mediated dopamine uptake and stimulates dopamine efflux leading to increased synaptic dopamine levels many folds above baseline. Methamphetamine also targets DAT-expressing peripheral immune cells, reduces wound healing and increases infection susceptibility. Peripheral immune cells such as myeloid cells, B cells and T cells express DAT. DAT activity on monocytes and macrophages exhibits immune suppressive properties via an autocrine paracrine mechanism, where deletion or inhibition of DAT activity increases inflammatory responses. In this study, utilizing a mouse model of daily single dose of methamphetamine administration, we investigated the impact of the drug on DAT expression in peripheral immune cells. We found in methamphetamine-treated mice that DAT expression was down-regulated in most of the innate and adaptive immune cells. Methamphetamine did not increase or decrease the total number of innate and adaptive immune cells but changed their immunophenotype to low-DAT-expressing phenotype. Moreover, serum cytokine distributions were altered in methamphetamine-treated mice. Therefore, resembling its effect in the CNS, in the periphery, methamphetamine regulates DAT expression on peripheral immune cell subsets, potentially describing methamphetamine regulation of peripheral immunity.


Subject(s)
Central Nervous System Stimulants , Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Central Nervous System Stimulants/pharmacology , Cells, Cultured
13.
Med Mycol ; 60(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35869980

ABSTRACT

This study explores the growth of bacterial, fungal, and interkingdom biofilms under aerobiosis or microaerobic conditions and the effect of ozonated sunflower oil on these biofilms. Candida species and Streptococcus mutans were used to study this interaction due to their importance in oral health and disease as these microorganisms display a synergistic relationship that manifests in the onset of caries and tooth decay. Biofilms were developed in a 96-well microtiter plate at 37ºC for 24 h, under aerobiosis or microaerobic conditions, and treated with ozonated oil for 5 to 120 min. All the microorganisms formed biofilms in both oxygenation conditions. Scanning electron microscopy was used to visualize biofilm morphology. Rodent experiments were performed to verify the oil-related toxicity and its efficacy in oral candidiasis. The growth of all Candida species was increased when co-cultured with S. mutans, whilst the growth of bacterium was greater only when co-cultured with C. krusei and C. orthopsilosis under aerobiosis and microaerobic conditions, respectively. Regardless of the oxygenation condition, ozonated oil significantly reduced the viability of all the tested biofilms and infected mice, showing remarkable microbicidal activity as corroborated with confocal microscopy and minimal toxicity. Thus, ozonated oil therapy can be explored as a strategy to control diseases associated with these biofilms especially in the oral cavity. LAY SUMMARY: We demonstrated that ozonated sunflower oil is effective at killing the biofilms formed by Candida species, by the bacterium Streptococcus mutans, or by both micoorganisms that can interact in the oral cavity, making it a potential therapeutic option for the treatment of these infections.


Subject(s)
Candida , Streptococcus mutans , Animals , Biofilms , Candida albicans , Mice , Sunflower Oil
14.
Infect Immun ; 90(4): e0009122, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35357221

ABSTRACT

Methamphetamine (METH) is a major public health and safety problem in the United States. Chronic METH abuse is associated with a 2-fold-higher risk of HIV infection and, possibly, additional infections, particularly those that enter through the respiratory tract or skin. Cryptococcus neoformans is an encapsulated opportunistic yeast-like fungus that is a relatively frequent cause of meningoencephalitis in immunocompromised patients, especially in individuals with AIDS. C. neoformans melanizes during mammalian infection in a process that presumably uses host-supplied compounds such as catecholamines. l-3,4-Dihydroxyphenylalanine (l-Dopa) is a natural catecholamine that is frequently used to induce melanization in C. neoformans. l-Dopa-melanized cryptococci manifest resistance to radiation, phagocytosis, detergents, and heavy metals. Using a systemic mouse model of infection and in vitro assays to critically assess the impact of METH on C. neoformans melanization and pathogenesis, we demonstrated that METH-treated mice infected with melanized yeast cells showed increased fungal burdens in the blood and brain, exacerbating mortality. Interestingly, analyses of cultures of METH-exposed cryptococci supplemented with l-Dopa revealed that METH accelerates fungal melanization, an event of adaptation to external stimuli that can be advantageous to the fungus during pathogenesis. Our findings provide novel evidence of the impact of METH abuse on host homeostasis and increased permissiveness to opportunistic microorganisms.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , HIV Infections , Methamphetamine , Sepsis , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Cryptococcosis/microbiology , Disease Models, Animal , Humans , Levodopa/pharmacology , Levodopa/therapeutic use , Mammals , Melanins , Methamphetamine/pharmacology , Mice , Saccharomyces cerevisiae
15.
J Nat Prod ; 85(4): 951-962, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357832

ABSTRACT

Dihydroartemisinic acid (DHAA) is a plant natural product that undergoes a spontaneous endoperoxide-forming cascade reaction to yield artemisinin in the presence of air. The endoperoxide functional group gives artemisinin its biological activity that kills Plasmodium falciparum, the parasite that causes malaria. To enhance our understanding of the mechanism of this cascade reaction, 2,3-didehydrodihydroartemisinic acid (2,3-didehydro-DHAA), a DHAA derivative with a double bond at the C2-position, was synthesized. When 2,3-didehydro-DHAA was exposed to air over time, instead of forming an endoperoxide, this compound predominantly underwent aromatization. This olefinated DHAA analogue reveals the requirement of a monoalkene functional group to initiate the endoperoxide-forming cascade reaction to yield artemisinin from DHAA. In addition, this aromatization process was exploited to illustrate the autoxidation process of a different plant natural product, dihydroserrulatene, to form the aromatic ring in serrulatene. This spontaneous aromatization process has applications in other natural products such as leubethanol and erogorgiaene. Due to their similarity in structure to antimicrobial natural products, the synthesized compounds in this study were tested for biological activity. A group of the tested compounds had minimum inhibitory concentration (MIC) values ranging from 12.5 to 25 µg/mL against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Cryptococcus neoformans.


Subject(s)
Antimalarials , Biological Products , Malaria , Antimalarials/chemistry , Antimalarials/pharmacology , Artemisinins , Humans
17.
J Pharmacol Exp Ther ; 379(3): 372-385, 2021 12.
Article in English | MEDLINE | ID: mdl-34535563

ABSTRACT

Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.


Subject(s)
Brain/drug effects , Brain/immunology , Central Nervous System Stimulants/pharmacology , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Methamphetamine/pharmacology , Animals , Central Nervous System/drug effects , Central Nervous System/immunology , Humans , Microglia/drug effects , Microglia/immunology
18.
Front Cell Infect Microbiol ; 11: 684150, 2021.
Article in English | MEDLINE | ID: mdl-34336712

ABSTRACT

Filamentous fungi such as Trichophyton rubrum and T. mentagrophytes, the main causative agents of onychomycosis, have been recognized as biofilm-forming microorganisms. Nitric oxide-releasing nanoparticles (NO-np) are currently in development for the management of superficial and deep bacterial and fungal infections, with documented activity against biofilms. In this context, this work aimed to evaluate, for the first time, the in vitro anti-T. rubrum biofilm potential of NO-np using standard ATCC MYA-4438 and clinical BR1A strains and compare it to commonly used antifungal drugs including fluconazole, terbinafine and efinaconazole. The biofilms formed by the standard strain produced more biomass than those from the clinical strain. NO-np, fluconazole, terbinafine, and efinaconazole inhibited the in vitro growth of planktonic T. rubrum cells. Similarly, NO-np reduced the metabolic activities of clinical strain BR1A preformed biofilms at the highest concentration tested (SMIC50 = 40 mg/mL). Scanning electron and confocal microscopy revealed that NO-np and efinaconazole severely damaged established biofilms for both strains, resulting in collapse of hyphal cell walls and reduced the density, extracellular matrix and thickness of the biofilms. These findings suggest that biofilms should be considered when developing and testing new drugs for the treatment of dermatophytosis. Development of a biofilm phenotype by these fungi may explain the resistance of dermatophytes to some antifungals and why prolonged treatment is usually required for onychomycosis.


Subject(s)
Nanoparticles , Nitric Oxide , Antifungal Agents/pharmacology , Arthrodermataceae , Biofilms , Microbial Sensitivity Tests , Triazoles , Trichophyton
19.
Front Toxicol ; 32021 Mar.
Article in English | MEDLINE | ID: mdl-34109323

ABSTRACT

Methamphetamine (METH) is a substance of abuse that causes dysregulation of the innate and adaptive immunity in users. B cells are involved in the humoral component of the adaptive immunity by producing and secreting antibodies (Abs). METH modifies Ab production, although limited information on the impact of this psychostimulant on antigen (Ag)-specific humoral immune responses is available. Since T cell-dependent and T cell-independent Ags are involved in the activation of B lymphocytes, we explored the role of METH on humoral immunity to ovalbumin (OVA; T cell-dependent) and bacterial lipopolysaccharide (LPS; T cell-independent) in C57BL/6 mice. We demonstrated that METH extends the infiltration of B cells into pulmonary and splenic tissues 7 days post-Ag challenge. METH impairs Ab responses in the blood of animals challenged with OVA and LPS. Furthermore, METH diminishes the expression and distribution of IgM on B cell surface, suggesting a possible detrimental impact on users' humoral immunity to infection or autoimmunity.

20.
Neurology (ECronicon) ; 13(2): 19-33, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33899052

ABSTRACT

INTRODUCTION: The gut microbiome appears to be predictive of Parkinson's disease (PD) with constipation. Chronic constipation frequently manifests prior to motor symptoms and impairs quality of life. An osteopathic manipulative medicine (OMM) sequence used physical exam assessment and manual treatment of neuromusculoskeletal dysfunctions pertinent to constipation in PD for this prospective ABA-design study, IRB-NYITBHS1065. The effects of 4 weekly treatments on the gut microbiome among men and women over 40 years old with chronic constipation and PD were investigated. Severity of PD was rated with the Movement Disorders Society-Unified PD rating scale (UPDRS) in six subjects with constipation. Also, the Bristol stool scale and questionnaires validated for constipation were administered for diagnosis, symptom severity, and quality of life during a 4-week control-period (A), 4-weekly OMM-treatments (B), and 2-weeks no-intervention (A). Biweekly stool samples were assessed for normalized microbiota abundance. RESULTS: The mean Bristol rating improved from type 2 (± 1) Pre-OMM to 3 (± 1; p = .167; d = 0.677) Post-OMM. Mean constipation severity significantly decreased (p = .010; d = 1.508) Post-OMM. Mean quality of life significantly improved (p = .041; d = 1.072) Post-OMM. The Pre-OMM mean number of families within the phylum Firmicutes decreased by 3 (p = .043; d = 1.177) Post-OMM. There were significant changes in the normalized abundance of phyla Actinobacteria (p = .040; d = 0.845) and Verrucomicrobia (p = .024; d = 0.675) as well as in genus Roseburia (p = .033; d = 1.109), Intestinimonas (p = .035; d = 0.627) and Anaerotruncus (p = .004) Post-OMM. CONCLUSION: The gut microbiome shifted among individuals with constipation and PD after four weekly treatments with the OMM-sequence. Changes in the gut microbiome Post-OMM were associated with UPDRS results and constipation measures. Clinical trials and studies to develop the gut microbiome into a validated biomarker for PD are necessary to understand the impact of OMM in patients with PD and constipation.

SELECTION OF CITATIONS
SEARCH DETAIL
...