Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 65(4): 2880-2904, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34347470

ABSTRACT

Starting from the MLPCN probe compound ML300, a structure-based optimization campaign was initiated against the recent severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (3CLpro). X-ray structures of SARS-CoV-1 and SARS-CoV-2 3CLpro enzymes in complex with multiple ML300-based inhibitors, including the original probe ML300, were obtained and proved instrumental in guiding chemistry toward probe compound 41 (CCF0058981). The disclosed inhibitors utilize a noncovalent mode of action and complex in a noncanonical binding mode not observed by peptidic 3CLpro inhibitors. In vitro DMPK profiling highlights key areas where further optimization in the series is required to obtain useful in vivo probes. Antiviral activity was established using a SARS-CoV-2-infected Vero E6 cell viability assay and a plaque formation assay. Compound 41 demonstrates nanomolar activity in these respective assays, comparable in potency to remdesivir. These findings have implications for antiviral development to combat current and future SARS-like zoonotic coronavirus outbreaks.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , COVID-19/metabolism , Chlorocebus aethiops , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Glutamine/chemistry , Glutamine/pharmacology , Humans , Ketones/chemistry , Ketones/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemistry , SARS-CoV-2/enzymology , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
2.
J Org Chem ; 84(8): 4723-4734, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30412402

ABSTRACT

ABBV-168 is a dihalogenated nucleotide under investigation for the treatment of hepatitis C virus. Three synthetic routes aimed at achieving the stereoselective installation of the C2' gem-Br,F substitution and subsequent Vorbruggen glycosylation were explored to prepare the penultimate nucleoside intermediate. Development culminated in a route to ABBV-168 featuring a de novo chromatography-free furanose synthesis, protecting group-directed Vorbruggen glycosylation, and highly selective phosphoramidation to furnish the API.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Nucleotides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Humans , Microbial Sensitivity Tests , Molecular Conformation , Nucleotides/chemical synthesis , Nucleotides/chemistry
3.
Org Lett ; 20(17): 5158-5162, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30141634

ABSTRACT

Catalytic asymmetric syntheses of remote quaternary stereocenters have been developed by copper-catalyzed 1,4-hydrosilylation of γ,γ-disubstituted cyclohexadienones. A variety of cyclohexenones have been synthesized in good yield and excellent enantioselectivity. Versatile 2-silyloxy diene intermediates bearing γ,γ-disubstituted all carbon stereogenic centers can be isolated from the mild reaction conditions. The utility of this strategy is exemplified in a catalytic asymmetric total synthesis of (+)-mesembrine.

4.
J Lipid Res ; 52(12): 2226-2233, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21957203

ABSTRACT

Cardiolipin (CL) is a unique phospholipid (PL) found in the mitochondria of mammalian cells. CL remodeling is accompanied by turnover of its fatty acid acyl groups. Abnormalities in CL remodeling have been found in Barth's syndrome, diabetes, and obesity. The objective of this study was to determine nonessential fatty acid turnover in CL and phosphatidylethanolamine (PE) in the rat heart in vivo. Sprague-Dawley rats were fed either a regular chow or a high-fat diet for 15 weeks, and consumed 6% deuterium-enriched drinking water as a tracer for 14 days. CL and PE were extracted from cardiac tissue and isolated by TLC. Fatty acids from CL, PE, and plasma were analyzed by GC/MS for deuterium incorporation. Results showed oleate and vaccenate turnover were the highest in CL whereas palmitate and stearate turnover were low. Among the nonessential fatty acids in PE, turnover of stearate and vaccenate were the highest. The high turnover rate in vaccenate was unexpected, because vaccenate previously had no known metabolic or physiologic function. In conclusion, the similarly high turnover rates of both oleate and vaccenate readily suggest that remodeling is an important functional aspect of PL metabolism in CL.


Subject(s)
Cardiolipins/chemistry , Cardiolipins/metabolism , Fatty Acids, Nonesterified/metabolism , Myocardium/metabolism , Acetates/metabolism , Animals , Deuterium/chemistry , Diet, High-Fat , Gene Expression Regulation, Enzymologic , Kinetics , Male , Phosphatidylethanolamines/metabolism , Rats , Rats, Sprague-Dawley
5.
Org Lett ; 13(14): 3636-9, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21678904

ABSTRACT

A new protecting-group-free synthesis of the marine monocyclic ether (+)-brevisamide is reported. The enantioselective synthesis utilizes a key asymmetric Henry reaction and an Achmatowicz rearrangement for the formation of the tetrahydropyran ring. A penultimate Stille cross-coupling allows for an efficient installation of the conjugated (E,E)-diene side chain ultimately delivering (+)-brevisamide.


Subject(s)
Alkaloids/chemical synthesis , Pyrans/chemical synthesis , Alkaloids/chemistry , Marine Biology , Molecular Structure , Pyrans/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL