Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764355

ABSTRACT

The photo-induced dynamics of o-nitrophenol, particularly its photolysis, has garnered significant scientific interest as a potential source of nitrous acid in the atmosphere. Although the photolysis products and preceding photo-induced electronic structure dynamics have been investigated extensively, the nuclear dynamics accompanying the non-radiative relaxation of o-nitrophenol on the ultrafast timescale, which include an intramolecular proton transfer step, have not been experimentally resolved. Herein, we present a direct observation of the ultrafast nuclear motions mediating photo-relaxation using ultrafast electron diffraction. This work spatiotemporally resolves the loss of planarity which enables access to a conical intersection between the first excited state and the ground state after the proton transfer step, on the femtosecond timescale and with sub-Angstrom resolution. Our observations, supported by ab initio multiple spawning simulations, provide new insights into the proton transfer mediated relaxation mechanism in o-nitrophenol.

2.
Nat Commun ; 14(1): 2795, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202402

ABSTRACT

Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general.

3.
Science ; 374(6564): 178-182, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618569

ABSTRACT

Conformational isomers (conformers) of molecules play a decisive role in biology and organic chemistry. However, experimental methods for investigating chemical reaction dynamics are typically not conformer-sensitive. We report on a gas-phase megaelectronvolt ultrafast electron diffraction investigation of α-phellandrene undergoing an electrocyclic ring-opening reaction. We directly imaged the evolution of a specific set of α-phellandrene conformers into the product isomer predicted by the Woodward-Hoffmann rules in real space and time. Our experimental results are in quantitative agreement with nonadiabatic quantum molecular dynamics simulations, which provide considerable detail of how conformation influences the time scale and quantum efficiency of photoinduced ring-opening reactions.

4.
Nat Commun ; 11(1): 1447, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193414

ABSTRACT

The de Broglie wave nature of matter is a paradigmatic example of quantum physics and it has been exploited in precision measurements of forces and fundamental constants. However, matter-wave interferometry has remained an outstanding challenge for natural polypeptides, building blocks of life, which are fragile and difficult to handle. Here, we demonstrate the wave nature of gramicidin, a natural antibiotic composed of 15 amino acids. Its center of mass is delocalized over more than 20 times the molecular size in our time-domain Talbot-Lau interferometer. We compare the observed interference fringes with a model that includes both a rigorous treatment of the peptide's quantum wave nature as well as a quantum chemical assessment of its optical properties to distinguish our result from classical predictions. The realization of quantum optics with this prototypical biomolecule paves the way for quantum-assisted measurements on a large class of biologically relevant molecules.


Subject(s)
Gramicidin/chemistry , Models, Chemical , Peptides/chemistry , Quantum Theory , Interferometry , Photons , Ultraviolet Rays
5.
J Phys Chem B ; 123(23): 4850-4857, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31149826

ABSTRACT

Bacteriorhodopsin (bR) and halorhodopsin (hR) are both membrane proteins that transport ions across the cell membrane in halobacteria. Their ion transport function is triggered by photoactivated isomerization of the retinal protonated Schiff base (RPSB) chromophore. In spite of their similar structures, bR and hR exhibit widely differing RPSB isomerization rates and quantum yields (with bR being both faster and more efficient than hR). Previous simulations of photoisomerization in bR and hR using ab initio multiple spawning (AIMS) with QM/MM have successfully reproduced the experimentally observed ordering of quantum yields and isomerization rates, but the origin of these differences remains elusive. Here we investigate the role of electrostatic interactions in the protein pocket surrounding RPSB. We probe the influence of protein electrostatics by modifying the charge of the complex counterion in bR/hR to be more/less negative than the native state. We find that such modifications lead to bR-like behavior in hR and vice versa. This demonstrates the crucial role of electrostatic interactions in controlling the outcome of RPSB photoisomerization.


Subject(s)
Bacteriorhodopsins/chemistry , Halorhodopsins/chemistry , Molecular Dynamics Simulation , Photochemical Processes , Protein Conformation , Quantum Theory , Static Electricity , Stereoisomerism , Thermodynamics
6.
Nat Chem ; 11(6): 504-509, 2019 06.
Article in English | MEDLINE | ID: mdl-30988415

ABSTRACT

The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. Here we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon-carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We observed a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.

7.
Nat Commun ; 8(1): 29, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28642477

ABSTRACT

Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. High-level-coupled cluster calculations confirm the method's impressive electronic structure sensitivity for excited-state investigations.Many photo-induced processes such as photosynthesis occur in organic molecules, but their femtosecond excited-state dynamics are difficult to track. Here, the authors exploit the element and site selectivity of soft X-ray absorption to sensitively follow the ultrafast ππ*/nπ* electronic relaxation of hetero-organic molecules.

8.
Nat Commun ; 5: 4235, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24953740

ABSTRACT

Molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation--X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towards high kinetic energies, resulting from a particular C-O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.

9.
Phys Chem Chem Phys ; 16(23): 11770-9, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24817114

ABSTRACT

Progress in our understanding of ultrafast light-induced processes in molecules is best achieved through a close combination of experimental and theoretical approaches. Direct comparison is obtained if theory is able to directly reproduce experimental observables. Here, we present a joint approach comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the photoelectron signal and an induction time prior to excited state depopulation in dynamics simulations. As a benchmark molecule, we have chosen hexamethylcyclopentadiene, which shows an unprecedentedly large spectral delay of (310 ± 20) fs in TRPES experiments. For the dynamics simulations, methyl groups were replaced by "hydrogen atoms" having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 ± 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close connection between the two phenomena could be elucidated, allowing for a comparison with other polyenes and supporting the general validity of this finding for their excited state dynamics. Thus, the combination of TRPES and AIMS proves to be a powerful tool for a thorough understanding of ultrafast excited state dynamics in polyenes.

10.
J Chem Phys ; 136(12): 124317, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22462867

ABSTRACT

Through a combined experimental and theoretical approach, we study the nonadiabatic dynamics of the prototypical ethylene (C(2)H(4)) molecule upon π → π(∗) excitation with 161 nm light. Using a novel experimental apparatus, we combine femtosecond pulses of vacuum ultraviolet and extreme ultraviolet (XUV) radiation with variable delay to perform time resolved photo-ion fragment spectroscopy. In this second part of a two part series, the XUV (17 eV < hν < 23 eV) probe pulses are sufficiently energetic to break the C-C bond in photoionization, or to photoionize the dissociation products of the vibrationally hot ground state. The experimental data is directly compared to excited state ab initio molecular dynamics simulations explicitly accounting for the probe step. Enhancements of the CH(2)(+) and CH(3)(+) photo-ion fragment yields, corresponding to molecules photoionized in ethylene (CH(2)CH(2)) and ethylidene (CH(3)CH) like geometries are observed within 100 fs after π → π(∗) excitation. Quantitative agreement between theory and experiment on the relative CH(2)(+) and CH(3)(+) yields provides experimental confirmation of the theoretical prediction of two distinct conical intersections and their branching ratio [H. Tao, B. G. Levine, and T. J. Martinez, J. Phys. Chem. A. 113, 13656 (2009)]. Evidence for fast, non-statistical, elimination of H(2) molecules and H atoms is observed in the time resolved H(2)(+) and H(+) signals.

11.
J Chem Phys ; 134(24): 244306, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21721629

ABSTRACT

Using a combined theoretical and experimental approach, we investigate the non-adiabatic dynamics of the prototypical ethylene (C(2)H(4)) molecule upon π → π∗ excitation. In this first part of a two part series, we focus on the lifetime of the excited electronic state. The femtosecond time-resolved photoelectron spectrum (TRPES) of ethylene is simulated based on our recent molecular dynamics simulation using the ab initio multiple spawning method with multi-state second order perturbation theory [H. Tao, B. G. Levine, and T. J. Martinez, J. Phys. Chem. A 113, 13656 (2009)]. We find excellent agreement between the TRPES calculation and the photoion signal observed in a pump-probe experiment using femtosecond vacuum ultraviolet (hν = 7.7 eV) pulses for both pump and probe. These results explain the apparent discrepancy over the excited state lifetime between theory and experiment that has existed for ten years, with experiments [e.g., P. Farmanara, V. Stert, and W. Radloff, Chem. Phys. Lett. 288, 518 (1998) and K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008)] reporting much shorter lifetimes than predicted by theory. Investigation of the TRPES indicates that the fast decay of the photoion yield originates from both energetic and electronic factors, with the energetic factor playing a larger role in shaping the signal.

12.
J Chem Phys ; 132(3): 034101, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20095722

ABSTRACT

Since the seminal contribution of Roothaan, quantum chemistry methods are traditionally expressed using finite basis sets comprised of smooth and continuous functions (atom-centered Gaussians) to describe the electronic degrees of freedom. Although this approach proved quite powerful, it is not well suited for large basis sets because of linear dependence problems and ill conditioning of the required matrices. The finite element method (FEM), on the other hand, is a powerful numerical method whose convergence is also guaranteed by variational principles and can be achieved systematically by increasing the number of degrees of freedom and/or the polynomial order of the shape functions. Here we apply the real-space FEM to Hartree-Fock calculations in three dimensions. The method produces sparse, banded Hermitian matrices while allowing for variable spatial resolution. This local-basis approach to electronic structure theory allows for systematic convergence and promises to provide an accurate and efficient way toward the full ab initio analysis of materials at larger scales. We introduce a new acceleration technique for evaluating the exchange contribution within FEM and explore the accuracy and robustness of the method for some selected test atoms and molecules. Furthermore, we applied a divide-and-conquer (DC) method to the finite-element Hartree-Fock ab initio electronic-structure calculations in three dimensions. This DC approach leads to facile parallelization and should enable reduced scaling for large systems.

13.
J Phys Chem A ; 111(47): 11948-60, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-17985850

ABSTRACT

Femtosecond time-resolved photoelectron spectroscopy and high-level theoretical calculations were used to study the effects of methyl substitution on the electronic dynamics of the alpha,beta-enones acrolein (2-propenal), crotonaldehyde (2-butenal), methylvinylketone (3-buten-2-one), and methacrolein (2-methyl-2-propenal) following excitation to the S2(pipi*) state at 209 and 200 nm. We determine that following excitation the molecules move rapidly away from the Franck-Condon region, reaching a conical intersection promoting relaxation to the S1(npi*) state. Once on the S1 surface, the trajectories access another conical intersection, leading them to the ground state. Only small variations between molecules are seen in their S2 decay times. However, the position of methyl group substitution greatly affects the relaxation rate from the S1 surface and the branching ratios to the products. Ab initio calculations used to compare the geometries, energies, and topographies of the S1/S0 conical intersections of the molecules are not able to satisfactorily explain the variations in relaxation behavior. We propose that the S1 lifetime differences are caused by specific dynamical factors that affect the efficiency of passage through the S1/S0 conical intersection.

14.
J Chem Phys ; 123(23): 234308, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16392921

ABSTRACT

We have studied the cis-->trans and trans-->cis photoisomerization of azobenzene after n-->pi* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined "on the fly" from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields.

15.
Faraday Discuss ; 127: 149-63, 2004.
Article in English | MEDLINE | ID: mdl-15471344

ABSTRACT

We use ab initio results to reparameterize a multi-reference semiempirical method to reproduce the ground and excited state potential energy surfaces (PESs) for the chromophore of Green Fluorescent Protein (GFP). The validity of the new parameter set is tested, and the new method is combined with a quantum mechanical/molecular mechanical (QM/MM) treatment so that it can be applied in the solution phase. Solvent effects on the energetics of the relevant conical intersections are explored. We then combine this representation of the ground and excited state PESs with the full multiple spawning (FMS) nonadiabatic wavepacket dynamics method to simulate the photodynamics of the neutral GFP chromophore in both gas and solution phases. In these calculations, the PESs and their nonadiabatic couplings are evaluated simultaneously with the nuclear dynamics, ie. "on-the-fly". The effect of solvation is seen to be quite dramatic, resulting in an order of magnitude decrease in the excited state lifetime. We observe a correlated torsion about a double bond and its adjacent single bond in both gas and solution phases. This is discussed in the context of previous proposals about minimal volume isomerization mechanisms in protein environments.


Subject(s)
Luminescent Proteins/chemistry , Green Fluorescent Proteins , Models, Molecular , Protein Conformation , Quantum Theory , Solvents , Thermodynamics
16.
Faraday Discuss ; (110): 447-62; discussion 477-520, 1998.
Article in English | MEDLINE | ID: mdl-10822594

ABSTRACT

The membrane protein bacteriorhodopsin contains all-trans-retinal in a binding site lined by amino acid side groups and water molecules that guide the photodynamics of retinal. Upon absorption of light, retinal undergoes a subpicosecond all-trans-->13-cis phototransformation involving torsion around a double bond. The main reaction product triggers later events in the protein that induce pumping of a proton through bacteriorhodopsin. Quantum-chemical calculations suggest that three coupled electronic states, the ground state and two closely lying excited states, are involved in the motion along the torsional reaction coordinate phi. The evolution of the protein-retinal system on these three electronic surfaces has been modelled using the multiple spawning method for non-adiabatic dynamics. We find that, although most of the population transfer occurs on a timescale of 300 fs, some population transfer occurs on a longer timescale, occasionally extending well beyond 1 ps.


Subject(s)
Bacteriorhodopsins/chemistry , Retinaldehyde/chemistry , Bacterial Proteins/chemistry , Isomerism , Protein Conformation , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...