Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Hepatol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583492

ABSTRACT

BACKGROUND & AIMS: Polyploidy in hepatocytes has been proposed as a genetic mechanism to buffer against transcriptional dysregulation. Here, we aim to demonstrate the role of polyploidy in modulating gene regulatory networks in hepatocytes during ageing. METHODS: We performed single-nucleus RNA-sequencing in hepatocyte nuclei of different ploidy levels isolated from young and old wild-type mice. Changes in the gene expression and regulatory network were compared to three independent haploinsufficient strains for HNF4A, CEBPA or CTCF, representing non-deleterious perturbations. Phenotypic characteristics of the liver section were additionally evaluated histologically, whereas the genomic allele composition of hepatocytes was analysed by BaseScope. RESULTS: We observed that ageing in wild-type mice results in nuclei polyploidy and marked increase in steatosis. Haploinsufficiency of liver-specific master regulators (HFN4A or CEBPA) results in the enrichment of hepatocytes with tetraploid nuclei at a young age, affecting the genomic regulatory network, and dramatically suppressing ageing-related steatosis tissue-wide. Notably, these phenotypes are not the result of subtle disruption to liver-specific transcriptional networks, since haploinsufficiency in CTCF insulator protein resulted in the same phenotype. Further quantification of genotypes of tetraploid hepatocytes in young and old HFN4A haploinsufficient mice revealed that during ageing, tetraploid hepatocytes lead to the selection of wild-type alleles, restoring non-deleterious genetic perturbation. ConclusionsOur results suggest a model whereby polyploidisation leads to fundamentally different cell states. Polyploid conversion enables pleiotropic buffering against age-related decline via non-random allelic segregation to restore a wild-type genome.

2.
Cell Rep ; 42(10): 113305, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864798

ABSTRACT

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Subject(s)
Oxytocin , Paraventricular Hypothalamic Nucleus , Mice , Animals , Oxytocin/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Analgesics, Opioid/pharmacology , Neurons/metabolism , Satiation , Cholecystokinin/metabolism
3.
Nat Commun ; 14(1): 1523, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934108

ABSTRACT

Spatially resolved transcriptomics of tissue sections enables advances in fundamental and applied biomedical research. Here, we present Multiplexed Deterministic Barcoding in Tissue (xDBiT) to acquire spatially resolved transcriptomes of nine tissue sections in parallel. New microfluidic chips were developed to spatially encode mRNAs over a total tissue area of 1.17 cm2 with a 50 µm resolution. Optimization of the biochemical protocol increased read and gene counts per spot by one order of magnitude compared to previous reports. Furthermore, the introduction of alignment markers allowed seamless registration of images and spatial transcriptomic spots. Together with technological advances, we provide an open-source computational pipeline to prepare raw sequencing data for downstream analysis. The functionality of xDBiT was demonstrated by acquiring 16 spatially resolved transcriptomic datasets from five different murine organs, including the cerebellum, liver, kidney, spleen, and heart. Factor analysis and deconvolution of spatial transcriptomes allowed for in-depth characterization of the murine kidney.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Mice , Transcriptome/genetics , Gene Expression Profiling/methods , RNA, Messenger
4.
J Vis Exp ; (190)2022 12 09.
Article in English | MEDLINE | ID: mdl-36571404

ABSTRACT

The liver is a complex and heterogenous tissue responsible for carrying out many critical physiological functions, such as the maintenance of energy homeostasis and the metabolism of xenobiotics, among others. These tasks are performed through tight coordination between hepatic parenchymal and non-parenchymal cells. Additionally, various metabolic activities are confined to specific areas of the hepatic lobule-a phenomenon called liver zonation. Recent advances in single-cell sequencing technologies have empowered researchers to investigate tissue heterogeneity at a single-cell resolution. In many complex tissues, including the liver, harsh enzymatic and/or mechanical dissociation protocols can negatively affect the viability or the quality of the single-cell suspensions needed to comprehensively characterize this organ in health and disease. This paper describes a robust and reproducible protocol for isolating nuclei from frozen, archived liver tissues. This method yields high-quality nuclei that are compatible with downstream, single-cell omics approaches, including single-nucleus RNA-seq, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), as well as multimodal omics (joint RNA-seq and ATAC-seq). This method has been successfully used for the isolation of nuclei from healthy and diseased human, mouse, and non-human primate frozen liver samples. This approach allows the unbiased isolation of all the major cell types in the liver and, therefore, offers a robust methodology for studying the liver at the single-cell resolution.


Subject(s)
Cell Nucleus , Multiomics , Animals , Mice , Cell Nucleus/metabolism , Chromatin/metabolism , Freezing , High-Throughput Nucleotide Sequencing/methods , Liver
5.
Mol Metab ; 60: 101487, 2022 06.
Article in English | MEDLINE | ID: mdl-35378329

ABSTRACT

OBJECTIVE: Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. METHODS: Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. RESULTS: Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. CONCLUSIONS: Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Diabetes Mellitus, Type 2/metabolism , Fibrosis , Hepatocytes/metabolism , Humans , Lipids , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Transcription Factors/metabolism
6.
Mamm Genome ; 31(5-6): 170-180, 2020 06.
Article in English | MEDLINE | ID: mdl-32270277

ABSTRACT

Cellular heterogeneity is revolutionizing the way to study, monitor and dissect complex diseases. This has been possible with the technological and computational advances associated to single-cell genomics and epigenomics. Deeper understanding of cell-to-cell variation and its impact on tissue function will open new avenues for early disease detection, accurate diagnosis and personalized treatments, all together leading to the next generation of health care. This review focuses on the recent discoveries that single-cell genomics and epigenomics have facilitated in the context of human health. It highlights the potential of single-cell omics to further advance the development of personalized treatments and precision medicine in cancer, diabetes and chronic age-related diseases. The promise of single-cell technologies to generate new insights about the differences in function between individual cells is just emerging, and it is paving the way for identifying biomarkers and novel therapeutic targets to tackle age, complex diseases and understand the effect of life style interventions and environmental factors.


Subject(s)
Aging/genetics , Diabetes Mellitus/genetics , Epigenesis, Genetic , Epigenomics/methods , Neoplasms/genetics , Single-Cell Analysis/methods , Aging/metabolism , Aging/pathology , Animals , Cells, Cultured , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Gene-Environment Interaction , Genetic Variation , Humans , Neoplasms/metabolism , Neoplasms/pathology , Organoids/metabolism , Organoids/pathology , Precision Medicine/trends
7.
Nat Commun ; 10(1): 1251, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890697

ABSTRACT

Male gametes are generated through a specialised differentiation pathway involving a series of developmental transitions that are poorly characterised at the molecular level. Here, we use droplet-based single-cell RNA-Sequencing to profile spermatogenesis in adult animals and at multiple stages during juvenile development. By exploiting the first wave of spermatogenesis, we both precisely stage germ cell development and enrich for rare somatic cell-types and spermatogonia. To capture the full complexity of spermatogenesis including cells that have low transcriptional activity, we apply a statistical tool that identifies previously uncharacterised populations of leptotene and zygotene spermatocytes. Focusing on post-meiotic events, we characterise the temporal dynamics of X chromosome re-activation and profile the associated chromatin state using CUT&RUN. This identifies a set of genes strongly repressed by H3K9me3 in spermatocytes, which then undergo extensive chromatin remodelling post-meiosis, thus acquiring an active chromatin state and spermatid-specific expression.


Subject(s)
Histones/metabolism , Spermatocytes/growth & development , Spermatogenesis/physiology , Transcription, Genetic/physiology , X Chromosome/metabolism , Animals , Cell Separation/methods , Chromatin/metabolism , Chromosome Mapping/methods , Chromosomes, Human, Pair 21/genetics , Epigenesis, Genetic/physiology , Female , Flow Cytometry/methods , Gene Expression Profiling , Gene Expression Regulation, Developmental/physiology , Histones/genetics , Humans , Male , Meiotic Prophase I/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sequence Analysis, RNA , Single-Cell Analysis , Spermatocytes/metabolism , Testis/cytology
8.
BMJ Open ; 7(3): e014931, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28302638

ABSTRACT

INTRODUCTION: For the optimal management of children with cystic fibrosis, there are currently no efficient tools for the precise adjustment of pancreatic enzyme replacement therapy, either for advice on appropriate dietary intake or for achieving an optimal nutrition status. Therefore, we aim to develop a mobile application that ensures a successful nutritional therapy in children with cystic fibrosis. METHODS AND ANALYSIS: A multidisciplinary team of 12 partners coordinate their efforts in 9 work packages that cover the entire so-called 'from laboratory to market' approach by means of an original and innovative co-design process. A cohort of 200 patients with cystic fibrosis aged 1-17 years are enrolled. We will develop an innovative, clinically tested mobile health application for patients and health professionals involved in cystic fibrosis management. The mobile application integrates the research knowledge and innovative tools for maximising self-management with the aim of leading to a better nutritional status, quality of life and disease prognosis. Bringing together different and complementary areas of knowledge is fundamental for tackling complex challenges in disease treatment, such as optimal nutrition and pancreatic enzyme replacement therapy in cystic fibrosis. Patients are expected to benefit the most from the outcomes of this innovative project. ETHICS AND DISSEMINATION: The project is approved by the Ethics Committee of the coordinating organisation, Hospital Universitari La Fe (Ref: 2014/0484). Scientific findings will be disseminated via journals and conferences addressed to clinicians, food scientists, information and communications technology experts and patients. The specific dissemination working group within the project will address the wide audience communication through the website (http://www.mycyfapp.eu), the social networks and the newsletter.


Subject(s)
Child Welfare , Cystic Fibrosis/therapy , Program Evaluation/methods , Self-Management/methods , Telemedicine/methods , Adolescent , Child , Child, Preschool , Europe , Female , Humans , Infant , Male
9.
ACS Chem Biol ; 12(3): 654-663, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28059499

ABSTRACT

Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan member of the nuclear receptor family of transcription factors whose activities are modulated upon binding of small molecules into an hydrophobic ligand-binding pocket (LBP). Although the LBP of COUP-TFII is filled with aromatic amino-acid side chains, alternative modes of ligand binding could potentially lead to regulation of the orphan receptor. Here, we screened a synthetic and natural compound library in a yeast one-hybrid assay and identified 4-methoxynaphthol as an inhibitor of COUP-TFII. This synthetic inhibitor was able to counteract processes either positively or negatively regulated by COUP-TFII in different mammalian cell systems. Hence, we demonstrate that the true orphan receptor COUP-TFII can be targeted by small chemicals which could be used to study the physiological functions of COUP-TFII or to counteract detrimental COUP-TFII activities in various pathological conditions.


Subject(s)
COUP Transcription Factor II/antagonists & inhibitors , Small Molecule Libraries , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Animals , Binding Sites , COUP Transcription Factor II/metabolism , Cell Differentiation/drug effects , Hep G2 Cells , Humans , Mice
10.
Front Biosci (Schol Ed) ; 7(1): 46-57, 2015 06 01.
Article in English | MEDLINE | ID: mdl-25961686

ABSTRACT

Technological breakthroughs are emphasizing the impact of epigenetic mechanisms in human health highlighting the importance of a fine-tune orchestration of DNA methylation, micro RNAs, histone modifications, and chromatin structure. Transcriptional regulators sense the concentration of intermediary metabolites associated to a wide variety of biological processes including the long-term imprinting and heritable DNA methylation. Recent epigenetic mechanisms associated with cholesterol and lipid homeostasis have a critical impact in the susceptibility, development and progression of complex diseases such as type 2 diabetes mellitus, non-alcoholic fatty liver, obesity and metabolic syndrome. The heritability of epigenetic states emerge as an additional level of complexity where the extension of somatic as well as inherited epigenetic modifications may require a thoughtful reconsideration in many human diseases related with metabolic disorders.


Subject(s)
Metabolic Diseases/genetics , Animals , Diabetes Mellitus, Type 2/genetics , Epigenesis, Genetic , Humans , Metabolic Syndrome/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics
11.
FEBS Open Bio ; 4: 996-1006, 2014.
Article in English | MEDLINE | ID: mdl-25473596

ABSTRACT

Histone acetylation affects several aspects of gene regulation, from chromatin remodelling to gene expression, by modulating the interplay between chromatin and key transcriptional regulators. The exact molecular mechanism underlying acetylation patterns and crosstalk with other epigenetic modifications requires further investigation. In budding yeast, these epigenetic markers are produced partly by histone acetyltransferase enzymes, which act as multi-protein complexes. The Sas3-dependent NuA3 complex has received less attention than other histone acetyltransferases (HAT), such as Gcn5-dependent complexes. Here, we report our analysis of Sas3p-interacting proteins using tandem affinity purification (TAP), coupled with mass spectrometry. This analysis revealed Pdp3p, a recently described component of NuA3, to be one of the most abundant Sas3p-interacting proteins. The PDP3 gene, was TAP-tagged and protein complex purification confirmed that Pdp3p co-purified with the NuA3 protein complex, histones, and several transcription-related and chromatin remodelling proteins. Our results also revealed that the protein complexes associated with Sas3p presented HAT activity even in the absence of Gcn5p and vice versa. We also provide evidence that Sas3p cannot substitute Gcn5p in acetylation of lysine 9 in histone H3 in vivo. Genome-wide occupancy of Sas3p using ChIP-on-chip tiled microarrays showed that Sas3p was located preferentially within the 5'-half of the coding regions of target genes, indicating its probable involvement in the transcriptional elongation process. Hence, this work further characterises the function and regulation of the NuA3 complex by identifying novel post-translational modifications in Pdp3p, additional Pdp3p-co-purifying chromatin regulatory proteins involved in chromatin-modifying complex dynamics and gene regulation, and a subset of genes whose transcriptional elongation is controlled by this complex.

12.
Science ; 328(5981): 1036-40, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20378774

ABSTRACT

Transcription factors (TFs) direct gene expression by binding to DNA regulatory regions. To explore the evolution of gene regulation, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine experimentally the genome-wide occupancy of two TFs, CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha, in the livers of five vertebrates. Although each TF displays highly conserved DNA binding preferences, most binding is species-specific, and aligned binding events present in all five species are rare. Regions near genes with expression levels that are dependent on a TF are often bound by the TF in multiple species yet show no enhanced DNA sequence constraint. Binding divergence between species can be largely explained by sequence changes to the bound motifs. Among the binding events lost in one lineage, only half are recovered by another binding event within 10 kilobases. Our results reveal large interspecies differences in transcriptional regulation and provide insight into regulatory evolution.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Evolution, Molecular , Gene Expression Regulation , Genome , Hepatocyte Nuclear Factor 4/metabolism , Liver/metabolism , Vertebrates/genetics , Algorithms , Animals , Base Sequence , Binding Sites , Biological Evolution , Chickens/genetics , Chromatin Immunoprecipitation , DNA/genetics , DNA/metabolism , Dogs , Genome, Human , Humans , Mice , Opossums/genetics , Protein Binding , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Species Specificity , Vertebrates/metabolism
13.
Curr Drug Metab ; 8(2): 185-94, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17305497

ABSTRACT

CYP3A4 is the most abundantly expressed drug-metabolizing P450 enzyme in human liver and contributes to the metabolism of a large number of drugs in use today. CYP3A4 is constitutively expressed in adult hepatocytes but it can also be transcriptionally induced by a variety of structurally diverse xenochemicals. CYP3A4 strongly contributes to the important variability in the therapeutic and toxic effects of drugs owing to the major role it plays in xenobiotic metabolism and the large intra- and inter-individual variability to which it is subjected. The functional examination of up to 13 kb of the CYP3A4 5'-flanking region has revealed that the regulation of this gene is a complex issue, with numerous transcription factors interacting with multiple promoter/enhancer elements. This also suggests that a high degree of human variability in the hepatic CYP3A4 expression could result from regulatory polymorphisms. Several transcription factors and nuclear receptors contribute to the hepatic-specific expression of CYP3A4, including: C/EBPalpha, C/EBPbeta, HNF4alpha, HNF3gamma, CAR and PXR. The induction phenomenon and the down-regulation of CYP3A4 in pathophysiological conditions, such as inflammatory situations, are key processes involved in the toxic vs. therapeutic effects of many drugs. Since CYP3A4 variation may affect the efficacy and toxicity of new drugs, development of reliable hepatic models for the assessment and prediction of the role of CYP3A4 in drug metabolism are important for drug development. Cultured human hepatocytes are the closest model to the human liver as far as CYP3A4 regulation and induction are concerned. However, other hepatic models should be considered in drug development for screening purposes owing to the limited availability of human hepatocytes.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Animals , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/metabolism , Down-Regulation , Gene Expression Regulation, Enzymologic , Hepatocytes/metabolism , Humans , Liver/metabolism , Regulatory Sequences, Nucleic Acid , Transcription, Genetic
14.
Mol Pharmacol ; 70(5): 1681-92, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16882880

ABSTRACT

Hepatocyte nuclear factor 4alpha (HNF4alpha) is a key transcription factor for the constitutive expression of cytochromes P450 (P450s) in the liver. However, human hepatoma HepG2 cells show a high level of HNF4alpha but express only marginal P450 levels. We found that the HNF4alpha-mediated P450 transcription in HepG2 is impaired by the low level of coactivators peroxisomal proliferator activated receptor-gamma coactivator 1alpha (PGC1alpha) and steroid receptor coactivator 1 (SRC1). Reporter assays with a chimeric CYP2C9-LUC construct demonstrated that the sole transfection of coactivators induced luciferase activity in HepG2 cells. In HeLa cells however, CYP2C9-LUC activity only significantly increased when coactivators were cotransfected with HNF4alpha. A deletion mutant lacking the two proximal HNF4alpha binding sites in the CYP2C9 promoter did not respond to PGC1alpha or SRC1, demonstrating that coactivators were acting through HNF4alpha response elements. Adenovirus-mediated transfection of PGC1alpha in human hepatoma cells caused a significant dose-dependent increase in CYP2C9, CYP1A1, and CYP1A2 and in the positive control CYP7A1. PGC1alpha also showed a moderate activating effect on CYP3A4, CYP3A5, and CYP2D6. Adenoviral transfection of SRC1 had a lessened effect on P450 genes. Chromatin immunoprecipitation assay demonstrated in vivo binding of HNF4alpha and PGC1alpha to HNF4alpha response sequences in the CYP2C9 promoter and to three new regulatory regions in the common 23.3 kilobase spacer sequence of the CYP1A1/2 cluster. Insulin treatment of HepG2 and human hepatocytes caused repression of PGC1alpha and a concomitant down-regulation of P450s. Our results establish the importance of coactivators PGC1alpha and SRC1 for the hepatic expression of human P450s and uncover a new HNF4alpha-dependent regulatory mechanism to constitutively control the CYP1A1/2 cluster.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A2/genetics , Heat-Shock Proteins/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Histone Acetyltransferases/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Adenoviridae/metabolism , Cells, Cultured , Cytochrome P-450 CYP2C9 , Female , HeLa Cells , Heat-Shock Proteins/genetics , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/drug effects , Histone Acetyltransferases/genetics , Humans , Insulin/pharmacology , Male , Middle Aged , Nuclear Receptor Coactivator 1 , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Binding/drug effects , Response Elements/genetics , Transcription Factors/genetics , Transcriptional Activation/drug effects , Transfection
15.
J Biol Chem ; 281(40): 29840-9, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-16891307

ABSTRACT

Hepatocyte nuclear factor 4alpha (HNF4alpha) plays critical roles during liver development and in the transcriptional regulation of many hepatic genes in adult liver. Here we have demonstrated that in human hepatoma HepG2 cells, HNF4alpha is expressed at levels as high as in human liver but its activity on target genes is very low or absent. We have discovered that the low expression of key coactivators (PGC1alpha, SRC1, SRC2, and PCAF) might account for the lack of function of HNF4alpha in HepG2 cells. Among them, PGC1alpha and SRC1 are the two most important HNF4alpha coactivators as revealed by reporter assays with an Apo-CIII promoter construct. Moreover, the expression of these two coactivators was found to be down-regulated in all human hepatomas investigated. Overexpression of SRC1 and PGC1alpha by recombinant adenoviruses led to a significant up-regulation of well characterized HNF4alpha-dependent genes (ApoCIII, ApoAV, PEPCK, AldoB, OTC, and CYP7A1) and forced HepG2 cells toward a more differentiated phenotype as demonstrated by increased ureogenic rate. The positive effect of PGC1alpha was seen to be dependent on HNF4alpha. Finally, insulin treatment of human hepatocytes and HepG2 cells caused repression of PGC1alpha and a concomitant down-regulation of ApoCIII, PEPCK, AldoB, and OTC. Altogether, our results suggest that SRC1, and notably PGC1alpha, are key coactivators for the proper function of HNF4alpha in human liver and for an integrative control of multiple hepatic genes involved in metabolism and homeostasis. The down-regulation of key HNF4alpha coactivators could be a determinant factor for the dedifferentiation of human hepatomas.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Down-Regulation/physiology , Heat-Shock Proteins/physiology , Hepatocyte Nuclear Factor 4/antagonists & inhibitors , Histone Acetyltransferases/physiology , Liver Neoplasms/metabolism , Transcription Factors/physiology , Adult , Aged , Carcinoma, Hepatocellular/pathology , Cell Differentiation/physiology , Cell Line, Tumor , Female , Heat-Shock Proteins/antagonists & inhibitors , Heat-Shock Proteins/genetics , Hepatocyte Nuclear Factor 4/metabolism , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/genetics , Homeostasis/physiology , Humans , Liver/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Nuclear Receptor Coactivator 1 , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
16.
Expert Opin Drug Metab Toxicol ; 2(2): 183-212, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16866607

ABSTRACT

Gaining knowledge on the metabolism of a drug, the enzymes involved and its inhibition or induction potential is a necessary step in pharmaceutical development of new compounds. Primary human hepatocytes are considered a cellular model of reference, as they express the majority of drug-metabolising enzymes, respond to enzyme inducers and are capable of generating in vitro a metabolic profile similar to what is found in vivo. However, hepatocytes show phenotypic instability and have a restricted accessibility. Different alternatives have been explored in the past recent years to overcome the limitations of primary hepatocytes. These include immortalisation of adult or fetal human hepatic cells by means of transforming tumour virus genes, oncogenes, conditionally immortalised hepatocytes, and cell fusion. New strategies are currently being used to upregulate the expression of drug-metabolising enzymes in cell lines or to derive hepatocytes from progenitor cells. This paper reviews the features of liver-derived cell lines, their suitability for drug metabolism studies as well as the state-of-the-art of the strategies pursued in order to generate metabolically competent hepatic cell lines.


Subject(s)
Drug Evaluation, Preclinical/methods , Hepatocytes/metabolism , Xenobiotics/metabolism , Animals , Cell Culture Techniques/methods , Cell Line , Cell Line, Transformed , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Reproducibility of Results , Xenobiotics/pharmacokinetics , Xenobiotics/pharmacology
17.
Mol Pharmacol ; 67(6): 2088-101, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15778453

ABSTRACT

CCAAT/enhancer-binding proteins (C/EBPs) are key transcription factors involved in the constitutive expression of several cytochrome P450 genes in the liver. Their concentration and activity change in several pathophysiological conditions. For instance, during inflammation, released cytokines induce repressive C/EBPbeta-liver inhibitory protein (LIP), which antagonizes constitutive C/EBP transactivators [C/EBPalpha and C/EBPbeta-liver activating protein (LAP)], down-regulating genes such as CYP3A4. However, the mechanism by which hepatic C/EBP factors modulate transcription of the CYP3A4 gene is not known. To elucidate the mechanism of action, we cotransfected luciferase reporter vectors, containing 5'-flanking deletions of the CYP3A4 gene, along with expression vectors for C/EBPbeta-LAP, C/EBPbeta-LIP, and C/EBPalpha, in hepatic (HepG2) and nonhepatic (HeLa) cells. Analysis of the -3557 to -6954 base pair (bp) region demonstrated the existence of a 288-bp sequence at -5.95 kilobases (kb), which showed maximal response to C/EBPbeta-LAP ( approximately 30-fold increase in HepG2 cells). Coexpression of LAP with increasing amounts of LIP reduced the activating effect by approximately 70%. Site-directed mutagenesis of predicted C/EBPbeta binding sites demonstrated the presence of four functional C/EBPbeta-responsive motifs within this distal flanking region. Further experiments using chromatin immunoprecipitation proved the binding of endogenous C/EBPbeta to the -5.95-kilobase enhancer of the CYP3A4 gene in human hepatocytes. Expression of recombinant LAP and LIP by means of adenoviral vectors resulted in their binding to this region, which was followed by activation/repression of CYP3A4. Together, our results uncover a new distal enhancer site in the CYP3A4 gene where C/EBPbeta-LAP binds and activates transcription, whereas the truncated form, C/EBPbeta-LIP, antagonizes LAP activity and causes gene repression.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Protein Isoforms/physiology , Repressor Proteins/genetics , Trans-Activators/genetics , Transcription, Genetic/physiology , Animals , Base Sequence , CCAAT-Enhancer-Binding Proteins/genetics , Cell Line , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/genetics , Humans , Insecta , Molecular Sequence Data , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins/physiology , Trans-Activators/antagonists & inhibitors , Trans-Activators/physiology
18.
Altern Lab Anim ; 32 Suppl 1A: 65-74, 2004 Jun.
Article in English | MEDLINE | ID: mdl-23577436

ABSTRACT

Knowledge of metabolism, enzymes so far involved, and potential enzyme-inhibiting or enzyme-inducing properties of new compounds is a key issue in drug development. Primary cultured hepatocytes, cytochrome P450 (CYP)-engineered cells and hepatoma cell lines are currently being used for this purpose, but only primary cultures can produce a metabolic profile of a drug similar to that found in vivo and can respond to inducers. Because of their limited accessibility, alternatives to replace human hepatocytes are currently being explored, including the immortalisation of hepatocytes by using different strategies (i.e. SV40 T-large antigen, conditionally immortalised hepatocytes, transfection with c-myc, cH-ras, N-ras oncogenes, transgenic animals over-expressing growth factors or oncogenes and cre-lox recombination/excision). However, none of the resulting cells has the desirable phenotypic characteristics to replace primary cultures in drug metabolisms studies. We investigated why these differentiated human hepatomas do not express CYP genes and found that the levels of certain key transcription factors clearly differ from those found in hepatocytes. It was then conceivable that re-expression of one (or more) of these transcription factors could lead to an efficient transcription of CYP genes. The feasibility of this hypothesis was demonstrated by genetic engineering of Hep G2 cells with liver-enriched transcription factors followed by the analysis of the expression of the most relevant human CYPs.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Differentiation , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cytochrome P-450 Enzyme System/genetics , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...