Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(11): e23726, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847773

ABSTRACT

Calcitriol and calcimimetics are used to treat hyperparathyroidism secondary to chronic kidney disease (CKD). Calcitriol administration and the subsequent increase in serum calcium concentration decrease parathyroid hormone (PTH) levels, which should reduce bone remodeling. We have previously reported that, when maintaining a given concentration of PTH, the addition of calcimimetics is associated with an increased bone cell activity. Whether calcitriol administration affects bone cell activity while PTH is maintained constant should be evaluated in an animal model of renal osteodystrophy. The aim of the present study was to compare in CKD PTH-clamped rats the bone effects of calcitriol and calcimimetic administration. The results show that the administration of calcitriol and calcimimetic at doses that induced a similar reduction in PTH secretion produced dissimilar effects on osteoblast activity in 5/6 nephrectomized (Nx) rats with secondary hyperparathyroidism and in Nx rats with clamped PTH. Remarkably, in both rat models, the administration of calcitriol decreased osteoblastic activity, whereas calcimimetic increased bone cell activity. In vitro, calcitriol supplementation inhibited nuclear translocation of ß-catenin and reduced proliferation, osteogenesis, and mineralization in mesenchymal stem cells differentiated into osteoblasts. In conclusion, besides the action of calcitriol and calcimimetics at parathyroid level, these treatments have specific effects on bone cells that are independent of the PTH level.


Subject(s)
Calcimimetic Agents , Calcitriol , Osteoblasts , Parathyroid Hormone , Animals , Calcitriol/pharmacology , Rats , Calcimimetic Agents/pharmacology , Calcimimetic Agents/therapeutic use , Parathyroid Hormone/pharmacology , Male , Osteoblasts/drug effects , Osteoblasts/metabolism , Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/etiology , Hyperparathyroidism, Secondary/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects , Rats, Wistar , Renal Insufficiency/drug therapy , Renal Insufficiency/metabolism , Osteogenesis/drug effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Cell Differentiation/drug effects , Calcium/metabolism
2.
Front Immunol ; 15: 1333995, 2024.
Article in English | MEDLINE | ID: mdl-38420123

ABSTRACT

Introduction: RA patients are at higher risk of cardiovascular disease, influenced by therapies. Studying their cardiovascular and cardiometabolic proteome can unveil biomarkers and insights into related biological pathways. Methods: This study included two cohorts of RA patients: newly diagnosed individuals (n=25) and those with established RA (disease duration >25 years, n=25). Both cohorts were age and sex-matched with a control group (n=25). Additionally, a longitudinal investigation was conducted on a cohort of 25 RA patients treated with methotrexate and another cohort of 25 RA patients treated with tofacitinib for 6 months. Clinical and analytical variables were recorded, and serum profiling of 184 proteins was performed using the Olink technology platform. Results: RA patients exhibited elevated levels of 75 proteins that might be associated with cardiovascular disease. In addition, 24 proteins were increased in RA patients with established disease. Twenty proteins were commonly altered in both cohorts of RA patients. Among these, elevated levels of CTSL1, SORT1, SAA4, TNFRSF10A, ST6GAL1 and CCL18 discriminated RA patients and HDs with high specificity and sensitivity. Methotrexate treatment significantly reduced the levels of 13 proteins, while tofacitinib therapy modulated the expression of 10 proteins. These reductions were associated with a decrease in DAS28. Baseline levels of SAA4 and high levels of BNP were associated to the non-response to methotrexate. Changes in IL6 levels were specifically linked to the response to methotrexate. Regarding tofacitinib, differences in baseline levels of LOX1 and CNDP1 were noted between non-responder and responder RA patients. In addition, response to tofacitinib correlated with changes in SAA4 and TIMD4 levels. Conclusion: In summary, this study pinpoints molecular changes linked to cardiovascular disease in RA and proposes candidate protein biomarkers for distinguishing RA patients from healthy individuals. It also highlights how methotrexate and tofacitinib impact these proteins, with distinct alterations corresponding to each drug's response, identifying potential candidates, as SAA4, for the response to these therapies.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Cardiovascular Diseases , Humans , Methotrexate , Antirheumatic Agents/therapeutic use , Proteome , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/chemically induced
3.
Biomolecules ; 10(2)2020 02 24.
Article in English | MEDLINE | ID: mdl-32102312

ABSTRACT

: Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.


Subject(s)
Kidney Diseases/metabolism , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Acute Kidney Injury/metabolism , Animals , Disease Models, Animal , Humans , Kidney/metabolism , Kidney Diseases/physiopathology , Mice , Mitochondria/physiology , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/physiology , Phosphorylation
4.
Eur J Clin Invest ; 45(11): 1129-44, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26268950

ABSTRACT

BACKGROUND: Vascular calcification (VC) is highly prevalent in patients with chronic kidney disease (CKD). Low magnesium levels are associated with VC, and recent in vitro studies confirm a protective role of magnesium, which is mediated by its entry into the VSMCs through the Transient Receptor Potential Melastatin 7 (TRPM7) channel. The role of Angiotensin II (Ang II) on VC is still unclear. As Ang II is able to stimulate TRPM7 activity, we hypothesize that it might prevent VC. Thus, the aim of this study was to dissect the direct effect of Ang II on VC. MATERIALS AND METHODS: We worked with a model of high phosphate (HP)-induced calcification in human aortic smooth muscle cells, which resembles the CKD-related VC. RESULTS: Addition of Ang II to cells growing in HP decreased calcification, which was associated with the upregulation of the osteogenic factors BMP2, Runx2/Cbfa1, Osterix and ALP. A reduction of magnesium entry into the HP-calcifying cells was found. The treatment with Ang II avoided this reduction, which was reversed by the cotreatment with the TRPM7-inhibitor 2-APB. The protective effect of Ang II was related to AT1R-induced ERK1/2 MAPKinase activation. HP-induced calcification was also associated with the upregulation of the canonical Wnt/beta-catenin pathway, while its downregulation was related to attenuation of calcification by Ang II. CONCLUSION: As hypothesized, Ang II prevented phosphate-induced calcification in VSMCs, which appears mediated by the increase of magnesium influx and by the activation of the ERK1/2 and the inhibition of the canonical Wnt/beta-catenin signalling pathways.


Subject(s)
Angiotensin II/pharmacology , Magnesium/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Protein Serine-Threonine Kinases/drug effects , TRPM Cation Channels/drug effects , Vascular Calcification/metabolism , Vasoconstrictor Agents/pharmacology , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Bone Morphogenetic Protein 2/drug effects , Bone Morphogenetic Protein 2/metabolism , Boron Compounds/pharmacology , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , MAP Kinase Signaling System/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Sp7 Transcription Factor , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism , Transcription Factors/drug effects , Transcription Factors/metabolism , Up-Regulation , Wnt Signaling Pathway/drug effects
5.
Kidney Blood Press Res ; 34(4): 261-8, 2011.
Article in English | MEDLINE | ID: mdl-21691129

ABSTRACT

Vascular calcification is common in patients with chronic kidney disease (CKD) and contributes to the increased rate of cardiovascular morbidity and mortality. The mechanisms regulating vascular calcification are under investigation; it is accepted that vascular calcification is an active and complex process involving many factors that promote or inhibit calcification. Vascular smooth muscle cells undergo transformation into osteogenic cells. This transformation is being stimulated by high phosphate, and more recently the role of the calcium phosphate nanocrystals has gained attention. Experimental models of uremia and in vitro studies have shown that an excess of calcitriol accelerates vascular calcification. However, observational studies suggest that vitamin D provides a survival advantage for patients with CKD. Experimental work shows that for similar serum concentrations of calcium and phosphate paricalcitol produces less vascular calcification than calcitriol suggesting a differential effect at the cellular level. Important issues regarding the role of vitamin D compounds on vascular calcification will be commented in this review.


Subject(s)
Renal Insufficiency, Chronic/complications , Vascular Calcification/etiology , Vitamin D/physiology , Calcium/blood , Humans , Kidney Failure, Chronic/complications , Muscle, Smooth, Vascular/metabolism
6.
J Am Soc Nephrol ; 21(7): 1125-35, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20431039

ABSTRACT

Fibroblast growth factor 23 (FGF23) modulates mineral metabolism by promoting phosphaturia and decreasing the production of 1,25-dihydroxyvitamin D(3). FGF23 decreases parathyroid hormone (PTH) mRNA and secretion, but despite a marked elevation in FGF23 in uremia, PTH production increases. Here, we investigated the effect of FGF23 on parathyroid function in normal and uremic hyperplastic parathyroid glands in rats. In normal parathyroid glands, FGF23 decreased PTH production, increased expression of both the parathyroid calcium-sensing receptor and the vitamin D receptor, and reduced cell proliferation. Furthermore, FGF23 induced phosphorylation of extracellular signal-regulated kinase 1/2, which mediates the action of FGF23. In contrast, in hyperplastic parathyroid glands, FGF23 did not reduce PTH production, did not affect expression of the calcium-sensing receptor or vitamin D receptor, and did not affect cell proliferation. In addition, FGF23 failed to activate the extracellular signal-regulated kinase 1/2-mitogen-activated protein kinase pathway in hyperplastic parathyroid glands. We observed very low expression of the FGF23 receptor 1 and the co-receptor Klotho in uremic hyperplastic parathyroid glands, which may explain the lack of response to FGF23 in this tissue. In conclusion, in hyperparathyroidism secondary to renal failure, the parathyroid cells resist the inhibitory effects of FGF23, perhaps as a result of the low expression of FGF23 receptor 1 and Klotho in this condition.


Subject(s)
Fibroblast Growth Factors/pharmacology , Parathyroid Glands/metabolism , Parathyroid Hormone/metabolism , Uremia/metabolism , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Glucuronidase/metabolism , Hyperplasia/metabolism , Hyperplasia/pathology , Klotho Proteins , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Parathyroid Glands/drug effects , Parathyroid Glands/pathology , Rats , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, Calcitriol/metabolism , Receptors, Calcium-Sensing/metabolism , Tissue Culture Techniques , Uremia/pathology
7.
Am J Physiol Renal Physiol ; 298(5): F1197-204, 2010 May.
Article in English | MEDLINE | ID: mdl-20181667

ABSTRACT

We have previously demonstrated that the activation of rat parathyroid calcium-sensing receptor (CaSR) upregulates VDR expression in vivo (Garfia B, Cañadillas S, Luque F, Siendones E, Quesada M, Almadén Y, Aguilera-Tejero E, Rodríguez M. J Am Soc Nephrol 13: 2945-2952, 2002; Rodriguez ME, Almaden Y, Cañadillas S, Canalejo A, Siendones E, Lopez I, Aguilera-Tejero E, Martin D, Rodriguez M. Am J Physiol Renal Physiol 292: F1390-F1395, 2007). The present study was designed to characterize the signaling system that mediates the stimulation of parathyroid VDR gene expression by extracellular calcium. Experiments were performed in vitro by the incubation of rat parathyroid glands and in vivo with normal and uremic (Nx) rats receiving injections of CaCl(2) or EDTA to obtain hypercalcemic or hypocalcemic clamps. A high calcium concentration increased VDR expression. The addition of arachidonic acid (AA) to the low-calcium medium produced an increase in VDR mRNA of the same magnitude as that observed with high calcium. The addition of ionophore to the low-calcium medium also increased VDR mRNA expression. High calcium or the addition of AA to the low-calcium medium induced the activation (phosphorylation) of ERK1/2-MAPK. The specific inhibition of the ERK1/2-MAPK activity prevented the stimulation of VDR expression by high calcium or AA. These results suggest that AA regulates parathyroid VDR gene expression through the activation of the ERK1/2-MAPK. CaSR activation induced the activation of transcription factor Sp1, but not of NF-κB p50 or p65 or activator protein-1. The addition of AA to the low-calcium medium increased specific DNA-binding activity of Sp1 to almost the same level as high calcium, which was prevented by the inhibition of ERK1/2. Furthermore, mithramycin A (a Sp1 inhibitor) prevented the upregulation of VDR mRNA by high calcium. Finally, both sham and Nx hypercalcemic rats showed similar increased levels of VDR mRNA compared with sham and Nx hypocalcemic rats. Our results demonstrate that extracellular calcium stimulates VDR expression in parathyroid glands through the elevation of the cytosolic calcium level and the stimulation of the PLA(2)-AA-dependent ERK1/2-pathway. Furthermore, the transcription factor Sp1 mediates this effect.


Subject(s)
Calcium/pharmacology , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/physiology , Parathyroid Glands/metabolism , Receptors, Calcitriol/metabolism , Signal Transduction/physiology , Up-Regulation/drug effects , Animals , Arachidonic Acid/pharmacology , Dose-Response Relationship, Drug , In Vitro Techniques , MAP Kinase Signaling System/drug effects , Male , Mitogen-Activated Protein Kinase Kinases/drug effects , Models, Animal , NF-kappa B/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Sp1 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...