Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 45(9): 7538-7556, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37754259

ABSTRACT

Ouabain, an organic compound with the ability to strengthen the contraction of the heart muscle, was originally derived from plants. It has been observed that certain mammalian species, including humans, naturally produce ouabain, leading to its classification as a new type of hormone. When ouabain binds to Na+/K+-ATPase, it elicits various physiological effects, although these effects are not well characterized. Previous studies have demonstrated that ouabain, within the concentration range found naturally in the body (10 nmol/L), affects the polarity of epithelial cells and their intercellular contacts, such as tight junctions, adherens junctions, and gap junctional communication. This is achieved by activating signaling pathways involving cSrc and Erk1/2. To further investigate the effects of ouabain within the hormonally relevant concentration range (10 nmol/L), mRNA-seq, a high-throughput sequencing technique, was employed to identify differentially expressed transcripts. The discovery that the transcript encoding MYO9A was among the genes affected prompted an exploration of whether RhoA and its downstream effector ROCK were involved in the signaling pathways through which ouabain influences cell-to-cell contacts in epithelial cells. Supporting this hypothesis, this study reveals the following: (1) Ouabain increases the activation of RhoA. (2) Treatment with inhibitors of RhoA activation (Y27) and ROCK (C3) eliminates the enhancing effect of ouabain on the tight junction seal and intercellular communication via gap junctions. These findings further support the notion that ouabain acts as a hormone to emphasize the epithelial phenotype.

2.
Cancers (Basel) ; 15(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37627214

ABSTRACT

Acute lymphoblastic leukemia (ALL) is a hematological disease characterized by the dysfunction of the hematopoietic system that leads to arrest at a specific stage of stem cells development, suppressing the average production of cellular hematologic components. BCP-ALL is a neoplasm of the B-cell lineage progenitor. BCP-ALL is caused and perpetuated by several mechanisms that provide the disease with its tumor potential and genetic and cytological characteristics. These pathological features are used for diagnosis and the prognostication of BCP-ALL. However, most of these paraclinical tools can only be obtained by bone marrow aspiration, which, as it is an invasive study, can delay the diagnosis and follow-up of the disease, in addition to the anesthetic risk it entails for pediatric patients. For this reason, it is crucial to find noninvasive and accessible ways to supply information concerning diagnosis, prognosis, and the monitoring of the disease, such as circulating biomarkers. In oncology, a biomarker is any measurable indicator that demonstrates the presence of malignancy, tumoral behavior, prognosis, or responses to treatments. This review summarizes circulating molecules associated with BCP-ALL with potential diagnostic value, classificatory capacity during monitoring specific clinic features of the disease, and/or capacity to identify each BCP-ALL stage regarding its evolution and outcome of the patients with BCP-ALL. In the same way, we provide and classify biomarkers that may be used in further studies focused on clinical approaches or therapeutic target identification for BCP-ALL.

3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362049

ABSTRACT

Ouabain is a cardiac glycoside, initially isolated from plants, and currently thought to be a hormone since some mammals synthesize it endogenously. It has been shown that in epithelial cells, it induces changes in properties and components related to apical-basolateral polarity and cell-cell contacts. In this work, we used a whole-cell patch clamp to test whether ouabain affects the properties of the voltage-gated potassium currents (Ik) of epithelial cells (MDCK). We found that: (1) in cells arranged as mature monolayers, ouabain induced changes in the properties of Ik; (2) it also accelerated the recovery of Ik in cells previously trypsinized and re-seeded at confluence; (3) in cell-cell contact-lacking cells, ouabain did not produce a significant change; (4) Na+/K+ ATPase might be the receptor that mediates the effect of ouabain on Ik; (5) the ouabain-induced changes in Ik required the synthesis of new nucleotides and proteins, as well as Golgi processing and exocytosis, as evidenced by treatment with drugs inhibiting those processes; and (5) the signaling cascade included the participation of cSrC, PI3K, Erk1/2, NF-κB and ß-catenin. These results reveal a new role for ouabain as a modulator of the expression of voltage-gated potassium channels, which require cells to be in contact with themselves.


Subject(s)
Ouabain , Potassium Channels, Voltage-Gated , Animals , Ouabain/pharmacology , Potassium/metabolism , Potassium Channels/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Epithelial Cells/metabolism , Mammals/metabolism
4.
J Pers Med ; 12(5)2022 May 17.
Article in English | MEDLINE | ID: mdl-35629227

ABSTRACT

Chronic hyperglycemia increases the risk of developing severe COVID-19 symptoms, but the related mechanisms are unclear. A mean glucose level upon hospital admission >166 mg/dl correlates positively with acute respiratory distress syndrome in patients with hyperglycemia. The objective of this study was to evaluate the relationship between sustained hyperglycemia and the outcome of hospitalized patients with severe COVID-19. We also evaluated the effect of high glucose concentrations on the expression of angiotensin-converting enzyme 2 (ACE2). We carried out a case-control study with hospitalized patients with severe COVID-19 with and without sustained hyperglycemia. In a second stage, we performed in vitro assays evaluating the effects of high glucose concentrations on ACE2 gene expression. Fifty hospitalized patients with severe COVID-19 were included, of which 28 (56%) died and 22 (44%) recovered. Patients who died due to COVID-19 and COVID-19 survivors had a high prevalence of hyperglycemia (96.4% versus 90.9%), with elevated central glucose upon admission (197.7 mg/dl versus 155.9 mg/dl, p = 0.089) and at discharge (185.2 mg/dl versus 134 mg/dl, p = 0.038). The mean hypoxemia level upon hospital admission was 81% in patients who died due to COVID-19 complications and 88% in patients who survived (p = 0.026); at the time of discharge, hypoxemia levels were also different between the groups (68% versus 92%, p ≤ 0.001). In vitro assays showed that the viability of A549 cells decreased (76.41%) as the glucose concentration increased, and the ACE2 gene was overexpressed 9.91-fold after 72 h (p ≤ 0.001). The relationship between hyperglycemia and COVID-19 in hospitalized patients with COVID-19 plays an important role in COVID-19-related complications and the outcome for these patients. In patients with chronic and/or sustained hyperglycemia, the upregulation of ACE2, and its potential glycation and malfunction, could be related to complications observed in patients with COVID-19.

5.
Diagnostics (Basel) ; 12(3)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328241

ABSTRACT

SARS-CoV-2 is the etiological agent of COVID-19 and may evolve from asymptomatic disease to fatal outcomes. Real-time reverse-transcription polymerase chain reaction (RT-PCR) screening is the gold standard to diagnose severe accurate respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but this test is not 100% accurate, as false negatives can occur. We aimed to evaluate the potential false-negative results in hospitalized patients suspected of viral respiratory disease but with a negative previous SARS-CoV-2 RT-PCR and analyze variables that may increase the success of COVID-19 diagnosis in this group of patients. A total of 55 hospitalized patients suspected of viral respiratory disease but with a previous negative RT-PCR result for SARS-CoV-2 were included. All the participants had clinical findings related to COVID-19 and underwent a second SARS-CoV-2 RT-PCR. Chest-computed axial tomography (CT) was used as an auxiliary tool for COVID-19 diagnosis. After the second test, 36 patients (65.5%) were positive for SARS-CoV-2 (COVID-19 group), and 19 patients (34.5%) were negative (controls). There were differences between the groups in the platelet count and the levels of D-dimer, procalcitonin, and glucose (p < 0.05). Chest CT scans categorized as COVID-19 Reporting and Data System 5 (CO-RADS 5) were more frequent in the COVID-19 group than in the control group (91.7% vs. 52.6%; p = 0.003). CO-RADS 5 remained an independent predictor of COVID-19 diagnosis in a second SARS-CoV-2 screening (p = 0.013; odds ratio = 7.0, 95% confidence interval 1.5−32.7). In conclusion, chest CT classified as CO-RADS 5 was an independent predictor of a positive second SARS-CoV-2 RT-PCR, increasing the odds of COVID-19 diagnosis by seven times. Based on our results, in hospitalized patients with a chest CT classified as CO-RADS 5, a second SARS-CoV-2 RT-PCR test should be mandatory when the first one is negative. This approach could increase SARS-CoV-2 detection up to 65% and could allow for isolation and treatment, thus improving the patient outcome and avoiding further contagion.

6.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071686

ABSTRACT

Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.


Subject(s)
Cell Communication/drug effects , Dinoprostone/pharmacology , Epithelial Cells/drug effects , Gap Junctions/drug effects , Adenylyl Cyclases/metabolism , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dogs , Dose-Response Relationship, Drug , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gap Junctions/metabolism , Madin Darby Canine Kidney Cells , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Signal Transduction/drug effects , Time Factors
7.
J Cell Physiol ; 236(5): 3599-3614, 2021 05.
Article in English | MEDLINE | ID: mdl-33044004

ABSTRACT

TRPV4 is a nonselective cationic channel responsive to several physical and chemical stimuli. Defects in TRPV4 channel function result in human diseases, such as skeletal dysplasias, arthropathies, and peripheral neuropathies. Nonetheless, little is known about the role of TRPV4 in other cellular functions, such as nuclear Ca2+ homeostasis or Ca2+ -regulated transcription. Here, we confirmed the presence of the full-length TRPV4 channel in the nuclei of nonpolarized Madin-Darby canine kidney cells. Confocal Ca2+ imaging showed that activation of the channel increases cytoplasmic and nuclear Ca2+ leading to translocation of TRPV4 out of the nucleus together with ß-catenin, a transcriptional regulator in the Wnt signaling pathway fundamental in embryogenesis, organogenesis, and cellular homeostasis. TRPV4 inhibits ß-catenin transcriptional activity through a direct interaction dependent upon channel activity. This interaction also occurs in undifferentiated osteoblastoma and neuroblastoma cell models. Our results suggest a mechanism in which TRPV4 may regulate differentiation in several cellular contexts.


Subject(s)
Calcium/metabolism , Cell Nucleus/metabolism , Epithelial Cells/metabolism , Kidney/cytology , Models, Biological , TRPV Cation Channels/metabolism , Transcription, Genetic , beta Catenin/genetics , Animals , Calcium Signaling , Cell Differentiation , Cell Line, Tumor , Dogs , Humans , Ion Channel Gating , Madin Darby Canine Kidney Cells , Neuroblastoma/pathology , Osteosarcoma/pathology , Protein Binding , Protein Domains , Protein Transport , TRPV Cation Channels/chemistry , beta Catenin/metabolism
8.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396341

ABSTRACT

Gap junctions are molecular structures that allow communication between neighboring cells. It has been shown that gap junctional intercellular communication (GJIC) is notoriously reduced in cancer cells compared to their normal counterparts. Ouabain, a plant derived substance, widely known for its therapeutic properties on the heart, has been shown to play a role in several types of cancer, although its mechanism of action is not yet fully understood. Since we have previously shown that ouabain enhances GJIC in epithelial cells (MDCK), here we probed whether ouabain affects GJIC in a variety of cancer cell lines, including cervico-uterine (CasKi, SiHa and Hela), breast (MDA-MB-321 and MCF7), lung (A549), colon (SW480) and pancreas (HPAF-II). For this purpose, we conducted dye transfer assays to measure and compare GJIC in monolayers of cells with and without treatment with ouabain (0.1, 1, 10, 50 and 500 nM). We found that ouabain induces a statistically significant enhancement of GJIC in all of these cancer cell lines, albeit with distinct sensitivity. Additionally, we show that synthesis of new nucleotides or protein subunits is not required, and that Csrc, ErK1/2 and ROCK-Rho mediate the signaling mechanisms. These results may contribute to explaining how ouabain influences cancer.


Subject(s)
Cardiotonic Agents/pharmacology , Cell Communication , Gap Junctions/drug effects , Neoplasms/pathology , Ouabain/pharmacology , Apoptosis , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction , Tumor Cells, Cultured
9.
Cell Physiol Biochem ; 52(6): 1381-1397, 2019.
Article in English | MEDLINE | ID: mdl-31075189

ABSTRACT

BACKGROUND/AIMS: Ouabain, a well-known plant-derived toxin, is also a hormone found in mammals at nanomolar levels that binds to a site located in the a-subunit of Na⁺,K⁺-ATPase. Our main goal was to understand the physiological roles of ouabain. Previously, we found that ouabain increases the degree of tight junction sealing, GAP junction-mediated communication and ciliogenesis. Considering our previous results, we investigated the effect of ouabain on adherens junctions. METHODS: We used immunofluorescence and immunoblot methods to measure the effect of 10 nM ouabain on the cellular and nuclear content of E-cadherin, ß-catenin and γ-catenin in cultured monolayers of Marin Darby canine renal cells (MDCK). We also studied the effect of ouabain on adherens junction biogenesis through sequential Ca²âº removal and replenishment. Then, we investigated whether c-Src and ERK1/2 kinases are involved in these responses. RESULTS: Ouabain enhanced the cellular content of the adherens junction proteins E-cadherin, ß-catenin and γ-catenin and displaced ß-catenin and γ-catenin from the plasma membrane into the nucleus. Ouabain also increased the expression levels of E-cadherin and ß-catenin in the plasma membrane after Ca²âº replenishment. These effects on adherens junctions were sensitive to PP2 and PD98059, suggesting that they depend on c-Src and ERK1/2 signaling. The translocation of ß-catenin and γ-catenin into the nucleus was specific because ouabain did not change the localization of the tight junction proteins ZO-1 and ZO-2. Moreover, in ouabain-resistant MDCK cells, which express a Na⁺,K⁺-ATPase α1-subunit with low affinity for ouabain, this hormone was unable to regulate adherens junctions, indicating that the ouabain receptor that regulates adherens junctions is Na⁺,K⁺-ATPase. CONCLUSION: Ouabain (10 nM) upregulated adherens junctions. This novel result supports the proposition that one of the physiological roles of this hormone is the modulation of cell contacts.


Subject(s)
Adherens Junctions/drug effects , Ouabain/pharmacology , Adherens Junctions/metabolism , Animals , CSK Tyrosine-Protein Kinase , Cadherins/metabolism , Calcium/metabolism , Cell Nucleus/metabolism , Dogs , Madin Darby Canine Kidney Cells , Microscopy, Fluorescence , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Signal Transduction/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , beta Catenin/metabolism , gamma Catenin/metabolism , src-Family Kinases/metabolism
10.
Cardiol Res Pract ; 2019: 8646787, 2019.
Article in English | MEDLINE | ID: mdl-32089875

ABSTRACT

Cardiac glycosides are a group of compounds widely known for their action in cardiac tissue, some of which have been found to be endogenously produced (ECG). We have previously studied the effect of ouabain, an endogenous cardiac glycoside, on the physiology of epithelial cells, and we have shown that in concentrations in the nanomolar range, it affects key properties of epithelial cells, such as tight junction, apical basolateral polarization, gap junctional intercellular communication (GJIC), and adherent junctions. In this work, we study the influence of digoxin and marinobufagenin, two other endogenously expressed cardiac glycosides, on GJIC as well as the degree of transepithelial tightness due to tight junction integrity (TJ). We evaluated GJIC by dye transfer assays and tight junction integrity by transepithelial electrical resistance (TER) measurements, as well as immunohistochemistry and western blot assays of expression of claudins 2 and 4. We found that both digoxin and marinobufagenin improve GJIC and significantly enhance the tightness of the tight junctions, as evaluated from TER measurements. Immunofluorescence assays show that both compounds promote enhanced basolateral localization of claudin-4 but not claudin 2, while densitometric analysis of western blot assays indicate a significantly increased expression of claudin 4. These changes, induced by digoxin and marinobufagenin on GJIC and TER, were not observed on MDCK-R, a modified MDCK cell line that has a genetically induced insensitive α1 subunit, indicating that Na-K-ATPase acts as a receptor mediating the actions of both ECG. Plus, the fact that the effect of both cardiac glycosides was suppressed by incubation with PP2, an inhibitor of c-Src kinase, PD98059, an inhibitor of mitogen extracellular kinase-1 and Y-27632, a selective inhibitor of ROCK, and a Rho-associated protein kinase, indicate altogether that the signaling pathways involved include c-Src and ERK1/2, as well as Rho-ROCK. These results widen and strengthen our general hypothesis that a very important physiological role of ECG is the control of the epithelial phenotype and the regulation of cell-cell contacts.

11.
Physiol Rep ; 6(8): e13663, 2018 04.
Article in English | MEDLINE | ID: mdl-29665277

ABSTRACT

HEK293 cells are widely used as a host for expression of heterologous proteins; yet, little care has been taken to characterize their endogenous membrane components, including ion channels. In this work, we aimed to describe the biophysical and pharmacological properties of endogenous, voltage-dependent potassium currents (IKv). We also examined how its expression depends on culture conditions. We used the electrophysiological technique of whole-cell patch clamp to record ion currents from HEK293 cells. We found that HEK cells express endogenous, voltage-dependent potassium currents. We also found that diverse culture conditions, such as the passage number, the cell density, the type of serum that complements the culture media and the substratum, affect the magnitude and shape of IKv, resulting from the relative contribution of fast, slow, and noninactivating component currents. Incubation of cells in mature monolayers with trypsin-EDTA, notoriously reduces the magnitude and modifies the shape of voltage-dependent potassium endogenous currents; nonetheless HEK cells recover IKv's magnitude and shape within 6 h after replating, with a process that requires synthesis of new mRNA and protein subunits, as evidenced by the fact that actinomycin D and cycloheximide, inhibitors of synthesis of mRNA and protein, respectively, impair the recovery of IKv after trypsinization. In addition to be useful as a model expression system, HEK293 may be useful to understand how cells regulate the density of ion channels on the membrane.


Subject(s)
Cell Culture Techniques , Potassium Channels, Voltage-Gated/metabolism , Culture Media , HEK293 Cells , Humans , Ion Channel Gating/physiology , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/genetics
12.
J Cell Physiol ; 232(7): 1794-1807, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27869310

ABSTRACT

TRPV4 (transient receptor potential vanilloid 4) is a cation channel activated by hypotonicity, moderate heat, or shear stress. We describe the expression of TRPV4 during the differentiation of a corneal epithelial cell model, RCE1(5T5) cells. TRPV4 is a late differentiation feature that is concentrated in the apical membrane of the outmost cell layer of the stratified epithelia. Ca2+ imaging experiments showed that TRPV4 activation with GSK1016790A produced an influx of calcium that was blunted by the specific TRPV4 blocker RN-1734. We analyzed the involvement of TRPV4 in RCE1(5T5) epithelial differentiation by measuring the development of transepithelial electrical resistance (TER) as an indicator of the tight junction (TJ) assembly. We showed that TRPV4 activity was necessary to establish the TJ. In differentiated epithelia, activation of TRPV4 increases the TER and the accumulation of claudin-4 in cell-cell contacts. Epidermal Growth Factor (EGF) up-regulates the TER of corneal epithelial cultures, and we show here that TRPV4 activation mimicked this EGF effect. Conversely, TRPV4 inhibition or knock down by specific shRNA prevented the increase in TER. Moreover, TRPP2, an EGF-activated channel that forms heteromeric complexes with TRPV4, is also concentrated in the outmost cell layer of differentiated RCE1(5T5) sheets. This suggests that the EGF regulation of the TJ may involve a heterotetrameric TRPV4-TRPP2 channel. These results demonstrated TRPV4 activity was necessary for the correct establishment of TJ in corneal epithelia and as well as the regulation of both the barrier function of TJ and its ability to respond to EGF. J. Cell. Physiol. 232: 1794-1807, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Differentiation , Epithelium, Corneal/cytology , Models, Biological , TRPV Cation Channels/metabolism , Tight Junctions/metabolism , 3T3 Cells , Animals , Calcium/metabolism , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Claudin-4/metabolism , Electric Impedance , Epidermal Growth Factor/pharmacology , Ion Channel Gating/drug effects , Mice , Protein Transport/drug effects , Rabbits , Subcellular Fractions/metabolism , Tight Junctions/drug effects , Time Factors
13.
Cell Physiol Biochem ; 34(6): 2081-90, 2014.
Article in English | MEDLINE | ID: mdl-25562156

ABSTRACT

BACKGROUND/AIMS: The finding that endogenous ouabain acts as a hormone prompted efforts to elucidate its physiological function. In previous studies, we have shown that 10 nM ouabain (i.e., a concentration within the physiological range) modulates cell-cell contacts such as tight junctions and apical/basolateral polarity. In this study, we examined whether 10 nM ouabain affects another important cell-cell feature: gap junction communication (GJC). METHODS: We employed two different approaches: 1) analysis of the cell-to-cell diffusion of neurobiotin injected into a particular MDCK cell (epithelial cells from dog kidneys) in a confluent monolayer by counting the number of neighboring cells reached by the probe and 2) measurement of the electrical capacitance. RESULTS: We found that 10 nM ouabain increase GJC by 475% within 1 hour. The Na+-K+-ATPase acts as a receptor of ouabain. In previous works we have shown that ouabain activates c-Src and ERK1/2 in 1 hour; in the present study we show that the inhibition of these proteins block the effect of ouabain on GJC. This increase in GJC does not require synthesis of new protein components, because the inhibitors cycloheximide and actinomycin D did not affect this phenomenon. Using silencing assays we also demonstrate that this ouabain-induced enhancement of GJC involves connexins 32 and 43. CONCLUSION: Ouabain 10 nM increases GJC in MDCK cells.


Subject(s)
Cell Communication/drug effects , Epithelial Cells/metabolism , Gap Junctions/drug effects , Ouabain/administration & dosage , Animals , Dogs , Epithelial Cells/drug effects , Madin Darby Canine Kidney Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...