Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Diabetes Sci Technol ; 12(2): 260-264, 2018 03.
Article in English | MEDLINE | ID: mdl-28420257

ABSTRACT

Gestational diabetes (GDM) burden has been increasing progressively over the past years. Knowing that intrauterine exposure to maternal diabetes confers high risk for macrosomia as well as for future type 2 diabetes and obesity of the offspring, health care organizations try to provide effective control in spite of the limited resources. Artificial-intelligence-augmented telemedicine has been proposed as a helpful tool to facilitate an efficient widespread medical assistance to GDM. The aim of the study we present was to test the feasibility and acceptance of a mobile decision-support system for GDM, developed in the seventh framework program MobiGuide Project, which includes computer-interpretable clinical practice guidelines, access to data from the electronic health record as well as from glucose, blood pressure, and activity sensors. The results of this pilot study with 20 patients showed that the system is feasible. Compliance of patients with blood glucose monitoring was higher than that observed in a historical group of 247 patients, similar in clinical characteristics, who had been followed up for the 3 years prior to the pilot study. A questionnaire on the use of the telemedicine system showed a high degree of acceptance.


Subject(s)
Decision Support Systems, Clinical , Diabetes, Gestational , Smartphone , Software , Telemedicine , Adult , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Blood Pressure , Exercise , Feasibility Studies , Female , Humans , Ketosis , Patient Compliance , Patient Satisfaction , Pilot Projects , Pregnancy
2.
Int J Med Inform ; 101: 108-130, 2017 05.
Article in English | MEDLINE | ID: mdl-28347441

ABSTRACT

OBJECTIVES: The MobiGuide project aimed to establish a ubiquitous, user-friendly, patient-centered mobile decision-support system for patients and for their care providers, based on the continuous application of clinical guidelines and on semantically integrated electronic health records. Patients would be empowered by the system, which would enable them to lead their normal daily lives in their regular environment, while feeling safe, because their health state would be continuously monitored using mobile sensors and self-reporting of symptoms. When conditions occur that require medical attention, patients would be notified as to what they need to do, based on evidence-based guidelines, while their medical team would be informed appropriately, in parallel. We wanted to assess the system's feasibility and potential effects on patients and care providers in two different clinical domains. MATERIALS AND METHODS: We describe MobiGuide's architecture, which embodies these objectives. Our novel methodologies include a ubiquitous architecture, encompassing a knowledge elicitation process for parallel coordinated workflows for patients and care providers; the customization of computer-interpretable guidelines (CIGs) by secondary contexts affecting remote management and distributed decision-making; a mechanism for episodic, on demand projection of the relevant portions of CIGs from a centralized, backend decision-support system (DSS), to a local, mobile DSS, which continuously delivers the actual recommendations to the patient; shared decision-making that embodies patient preferences; semantic data integration; and patient and care provider notification services. MobiGuide has been implemented and assessed in a preliminary fashion in two domains: atrial fibrillation (AF), and gestational diabetes Mellitus (GDM). Ten AF patients used the AF MobiGuide system in Italy and 19 GDM patients used the GDM MobiGuide system in Spain. The evaluation of the MobiGuide system focused on patient and care providers' compliance to CIG recommendations and their satisfaction and quality of life. RESULTS: Our evaluation has demonstrated the system's capability for supporting distributed decision-making and its use by patients and clinicians. The results show that compliance of GDM patients to the most important monitoring targets - blood glucose levels (performance of four measurements a day: 0.87±0.11; measurement according to the recommended frequency of every day or twice a week: 0.99±0.03), ketonuria (0.98±0.03), and blood pressure (0.82±0.24) - was high in most GDM patients, while compliance of AF patients to the most important targets was quite high, considering the required ECG measurements (0.65±0.28) and blood-pressure measurements (0.75±1.33). This outcome was viewed by the clinicians as a major potential benefit of the system, and the patients have demonstrated that they are capable of self-monitoring - something that they had not experienced before. In addition, the system caused the clinicians managing the AF patients to change their diagnosis and subsequent treatment for two of the ten AF patients, and caused the clinicians managing the GDM patients to start insulin therapy earlier in two of the 19 patients, based on system's recommendations. Based on the end-of-study questionnaires, the sense of safety that the system has provided to the patients was its greatest asset. Analysis of the patients' quality of life (QoL) questionnaires for the AF patients was inconclusive, because while most patients reported an improvement in their quality of life in the EuroQoL questionnaire, most AF patients reported a deterioration in the AFEQT questionnaire. DISCUSSION: Feasibility and some of the potential benefits of an evidence-based distributed patient-guidance system were demonstrated in both clinical domains. The potential application of MobiGuide to other medical domains is supported by its standards-based patient health record with multiple electronic medical record linking capabilities, generic data insertion methods, generic medical knowledge representation and application methods, and the ability to communicate with a wide range of sensors. Future larger scale evaluations can assess the impact of such a system on clinical outcomes. CONCLUSION: MobiGuide's feasibility was demonstrated by a working prototype for the AF and GDM domains, which is usable by patients and clinicians, achieving high compliance to self-measurement recommendations, while enhancing the satisfaction of patients and care providers.


Subject(s)
Atrial Fibrillation/therapy , Decision Support Systems, Clinical , Diabetes, Gestational/therapy , Practice Guidelines as Topic/standards , Adult , Computer Communication Networks , Decision Making , Electronic Health Records , Female , Guideline Adherence , Humans , Pregnancy , Quality of Life
3.
J Diabetes Sci Technol ; 8(2): 238-246, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24876573

ABSTRACT

The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients' self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient's access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients' personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients' acceptance of the whole system.

4.
J Diabetes Sci Technol ; 7(4): 888-97, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23911170

ABSTRACT

BACKGROUND: Healthy diet and regular physical activity are powerful tools in reducing diabetes and cardiometabolic risk. Various international scientific and health organizations have advocated the use of new technologies to solve these problems. The PREDIRCAM project explores the contribution that a technological system could offer for the continuous monitoring of lifestyle habits and individualized treatment of obesity as well as cardiometabolic risk prevention. METHODS: PREDIRCAM is a technological platform for patients and professionals designed to improve the effectiveness of lifestyle behavior modifications through the intensive use of the latest information and communication technologies. The platform consists of a web-based application providing communication interface with monitoring devices of physiological variables, application for monitoring dietary intake, ad hoc electronic medical records, different communication channels, and an intelligent notification system. A 2-week feasibility study was conducted in 15 volunteers to assess the viability of the platform. RESULTS: The website received 244 visits (average time/session: 17 min 45 s). A total of 435 dietary intakes were recorded (average time for each intake registration, 4 min 42 s ± 2 min 30 s), 59 exercises were recorded in 20 heart rate monitor downloads, 43 topics were discussed through a forum, and 11 of the 15 volunteers expressed a favorable opinion toward the platform. Food intake recording was reported as the most laborious task. Ten of the volunteers considered long-term use of the platform to be feasible. CONCLUSIONS: The PREDIRCAM platform is technically ready for clinical evaluation. Training is required to use the platform and, in particular, for registration of dietary food intake.


Subject(s)
Behavior Therapy/methods , Cardiovascular Diseases/prevention & control , Diabetes Mellitus/therapy , Life Style , Metabolic Diseases/prevention & control , Obesity/therapy , Telemedicine/methods , Adult , Cardiovascular Diseases/etiology , Diabetes Complications/prevention & control , Feasibility Studies , Humans , Internet , Metabolic Diseases/etiology , Middle Aged , Obesity/complications , Pilot Projects , Precision Medicine/methods , Risk Reduction Behavior , Social Support , Treatment Outcome , Young Adult
5.
J Diabetes Sci Technol ; 5(1): 5-12, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21303619

ABSTRACT

BACKGROUND: The combination of telemedicine systems integrating mobile technologies with the use of continuous glucose monitors improves patients' glycemic control but demands a higher interaction with information technology tools that must be assessed. In this article, we analyze patients' behavior from the use-of-the-system point of view, identifying how continuous monitoring may change the interaction of patients with the mobile telemedicine system. METHODS: Patients' behavior were evaluated in a clinical experiment consisting of a 2-month crossover randomized study with 10 type 1 diabetes patients. During the entire experiment, patients used the DIABTel telemedicine system, and during the intervention phase, they wore a continuous glucose monitor. Throughout the experiment, all user actions were automatically registered. This article analyzes the occurrence of events and the behavior patterns in blood glucose (BG) self-monitoring and insulin adjustments. A subjective evaluation was also performed based on the answers of the patients to a questionnaire delivered at the end of the study. RESULTS: The number of sessions established with the mobile Smart Assistant was considerably higher during the intervention period than in the control period (29.0 versus 18.8, p < .05), and it was also higher than the number of Web sessions (29.0 versus 22.2, p < .01). The number of daily boluses was higher during the intervention period than in the control period (5.27 versus 4.40, p < .01). The number of daily BG measurements was also higher during the intervention period (4.68 versus 4.05, p < .05) and, in percentage, patients increased the BG measurements not associated to meals while decreasing the percentage of preprandial measurements. The subjective evaluation shows that patients would recommend the use of DIABTel in routine care. CONCLUSIONS: The use of a continuous glucose monitor changes the way patients manage their diabetes, as observed in the increased number of daily insulin bolus, the increased number of daily BG measurements, and the differences in the distribution of BG measurements throughout the day. Continuous monitoring also increases the interaction of patients with the information system and modifies their patterns of use. We can conclude that mobile technologies are especially useful in scenarios of tight monitoring in diabetes, and they are well accepted by patients.


Subject(s)
Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 1/therapy , Monitoring, Physiologic/methods , Patients , Telemedicine , Adult , Algorithms , Blood Glucose Self-Monitoring/standards , Continuity of Patient Care/organization & administration , Cross-Over Studies , Female , Humans , Male , Middle Aged , Mobile Health Units/organization & administration , Telemedicine/organization & administration , Telemedicine/standards , Young Adult
6.
Int J Med Inform ; 78(6): 391-403, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19162538

ABSTRACT

PURPOSE: Advanced information technologies joined to the increasing use of continuous medical devices for monitoring and treatment, have made possible the definition of a new telemedical diabetes care scenario based on a hand-held Personal Assistant (PA). This paper describes the architecture, functionality and implementation of the PA, which communicates different medical devices in a personal wireless network. DESCRIPTION OF THE SYSTEM: The PA is a mobile system for patients with diabetes connected to a telemedical center. The software design follows a modular approach to make the integration of medical devices or new functionalities independent from the rest of its components. Physicians can remotely control medical devices from the telemedicine server through the integration of the Common Object Request Broker Architecture (CORBA) and mobile GPRS communications. Data about PA modules' usage and patients' behavior evaluation come from a pervasive tracing system implemented into the PA. RESULTS AND DISCUSSION: The PA architecture has been technically validated with commercially available medical devices during a clinical experiment for ambulatory monitoring and expert feedback through telemedicine. The clinical experiment has allowed defining patients' patterns of usage and preferred scenarios and it has proved the Personal Assistant's feasibility. The patients showed high acceptability and interest in the system as recorded in the usability and utility questionnaires. Future work will be devoted to the validation of the system with automatic control strategies from the telemedical center as well as with closed-loop control algorithms.


Subject(s)
Computers, Handheld , Diabetes Mellitus/therapy , Telemedicine/methods , Blood Glucose/metabolism , Diabetes Mellitus/blood , Humans , Surveys and Questionnaires
7.
J Diabetes Sci Technol ; 3(5): 1039-46, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-20144417

ABSTRACT

BACKGROUND: The use of telemedicine for diabetes care has evolved over time, proving that it contributes to patient self-monitoring, improves glycemic control, and provides analysis tools for decision support. The timely development of a safe and robust ambulatory artificial pancreas should rely on a telemedicine architecture complemented with automatic data analysis tools able to manage all the possible high-risk situations and to guarantee the patient's safety. METHODS: The Intelligent Control Assistant system (INCA) telemedical artificial pancreas architecture is based on a mobile personal assistant integrated into a telemedicine system. The INCA supports four control strategies and implements an automatic data processing system for risk management (ADP-RM) providing short-term and medium-term risk analyses. The system validation comprises data from 10 type 1 pump-treated diabetic patients who participated in two randomized crossover studies, and it also includes in silico simulation and retrospective data analysis. RESULTS: The ADP-RM short-term risk analysis prevents hypoglycemic events by interrupting insulin infusion. The pump interruption has been implemented in silico and tested for a closed-loop simulation over 30 hours. For medium-term risk management, analysis of capillary blood glucose notified the physician with a total of 62 alarms during a clinical experiment (56% for hyperglycemic events). The ADP-RM system is able to filter anomalous continuous glucose records and to detect abnormal administration of insulin doses with the pump. CONCLUSIONS: Automatic data analysis procedures have been tested as an essential tool to achieve a safe ambulatory telemedical artificial pancreas, showing their ability to manage short-term and medium-term risk situations.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/drug effects , Diabetes Mellitus, Type 1/therapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Pancreas, Artificial , Signal Processing, Computer-Assisted , Telemedicine/instrumentation , Ambulatory Care , Automation , Clinical Alarms , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Diagnosis, Computer-Assisted , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Equipment Failure , Humans , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Predictive Value of Tests , Randomized Controlled Trials as Topic , Retrospective Studies , Risk Management , Systems Integration , Therapy, Computer-Assisted , Time Factors , Treatment Outcome
8.
J Diabetes Sci Technol ; 2(5): 899-905, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19885276

ABSTRACT

The growing availability of continuous data from medical devices in diabetes management makes it crucial to define novel information technology architectures for efficient data storage, data transmission, and data visualization. The new paradigm of care demands the sharing of information in interoperable systems as the only way to support patient care in a continuum of care scenario. The technological platforms should support all the services required by the actors involved in the care process, located in different scenarios and managing diverse information for different purposes. This article presents basic criteria for defining flexible and adaptive architectures that are capable of interoperating with external systems, and integrating medical devices and decision support tools to extract all the relevant knowledge to support diabetes care.

SELECTION OF CITATIONS
SEARCH DETAIL