Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36771610

ABSTRACT

Nursery cultivation practices can be modified to increase resistance to water stress in forest seedlings following field establishment, which may be increasingly important under climate change. We evaluated the morphological (survival, growth) and physiological (chlorophyll fluorescence, leaf water potential) responses to water stress for three ecologically diverse Quercus species (Q. robur, Q. pubescens, and Q. ilex) with varying traits resulting from the combination of growing media (peat, coir) and fertilization (standard, P-enriched, K-enriched). For all species under water stress, seedlings grown in coir had generally higher growth than those grown in peat. Seedlings fertilized with P performed better, particularly for survival; conversely, K fertilization resulted in inconsistent findings. Such results could be explained by a combination of factors. P fertilization resulted in higher P accumulation in seedlings, while no K accumulation was observed in K fertilized seedlings. As expected, the more drought-sensitive species, Q. robur, showed the worst response, while Q. pubescens had a drought resistance equal or better to Q. ilex despite being classified as intermediate in drought resistance in Mediterranean environments.

2.
Environ Res ; 195: 110868, 2021 04.
Article in English | MEDLINE | ID: mdl-33581095

ABSTRACT

Date palms are highly economically important species in hot arid regions, which may suffer ozone (O3) pollution equivalently to heat and water stress. However, little is known about date palm sensitivity to O3. Therefore, to identify their resistance mechanisms against elevated O3, physiological parameters (leaf gas exchange, chlorophyll fluorescence and leaf pigments) and biomass growth responses to realistic O3 exposure were tested in an isoprene-emitting date palm (Phoenix dactylifera L. cv. Nabut Saif) by a Free-Air Controlled Exposure (FACE) facility with three levels of O3 (ambient [AA, 45 ppb as 24-h average], 1.5 x AA and 2 x AA). We found a reduction of photosynthesis only at 2 x AA although some foliar traits known as early indicators of O3 stress responded already at 1.5 x AA, such as increased dark respiration, reduced leaf pigment content, reduced maximum quantum yield of PSII, inactivation of the oxygen evolving complex of PSII and reduced performance index PITOT. As a result, O3 did not affect most of the growth parameters although significant declines of root biomass occurred only at 2 x AA. The major mechanism in date palm for reducing the severity of O3 impacts was a restriction of stomatal O3 uptake due to low stomatal conductance and O3-induced stomatal closure. In addition, an increased respiration in elevated O3 may indicate an enhanced capacity of catabolizing metabolites for detoxification and repair. Interestingly, date palm produced low amounts of monoterpenes, whose emission was stimulated in 2 x AA, although isoprene emission declined at both 1.5 and 2 x AA. Our results warrant more research on a biological significance of terpenoids in plant resistance against O3 stress.


Subject(s)
Air Pollutants , Ozone , Phoeniceae , Air Pollutants/toxicity , Ozone/toxicity , Photosynthesis , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL