Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Plant J ; 117(1): 264-279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37844131

ABSTRACT

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lpr ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lpr . Using recombinant lines from a biparental cross (Cvi-0 x Col-0), we show that the gene encoding class 2 Sucrose-Non-Fermenting Protein kinase 2.4 (SnRK2.4) in Col-0 contributes to >30% of Lpr by enhancing aquaporin-dependent water transport. At variance with the inactive and possibly unstable Cvi-0 SnRK2.4 form, the Col-0 form interacts with and phosphorylates the prototypal PIP2;1 aquaporin at Ser121 and stimulates its water transport activity upon coexpression in Xenopus oocytes and yeast cells. Activation of PIP2;1 by Col-0 SnRK2.4 in yeast also requires its protein kinase activity and can be counteracted by clade A Protein Phosphatases 2C. SnRK2.4 shows all hallmarks to be part of core abscisic acid (ABA) signaling modules. Yet, long-term (>3 h) inhibition of Lpr by ABA possibly involves a SnRK2.4-independent inhibition of PIP2;1. SnRK2.4 also promotes stomatal aperture and ABA-induced inhibition of primary root growth. The study identifies a key component of Lpr and sheds new light on the functional overlap and specificity of SnRK2.4 with respect to other ABA-dependent or independent SnRK2s.


Subject(s)
Aquaporins , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Phosphorylation , Aquaporins/genetics , Aquaporins/metabolism , Water/metabolism
2.
Sci Adv ; 9(14): eadd4791, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37027473

ABSTRACT

Cells maintain a constant dialog between the extracellular matrix and their plasma membrane to fine tune signal transduction processes. We found that the receptor kinase FERONIA (FER), which is a proposed cell wall sensor, modulates phosphatidylserine plasma membrane accumulation and nano-organization, a key regulator of Rho GTPase signaling in Arabidopsis. We demonstrate that FER is required for both Rho-of-Plant 6 (ROP6) nano-partitioning at the membrane and downstream production of reactive oxygen species upon hyperosmotic stimulus. Genetic and pharmacological rescue experiments indicate that phosphatidylserine is required for a subset of, but not all, FER functions. Furthermore, application of FER ligand shows that its signaling controls both phosphatidylserine membrane localization and nanodomains formation, which, in turn, tunes ROP6 signaling. Together, we propose that a cell wall-sensing pathway controls via the regulation of membrane phospholipid content, the nano-organization of the plasma membrane, which is an essential cell acclimation to environmental perturbations.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphatidylserines/metabolism , Signal Transduction/physiology , Arabidopsis/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Cell Membrane/metabolism , Plants/metabolism
3.
Open Res Eur ; 2: 46, 2022.
Article in English | MEDLINE | ID: mdl-37645324

ABSTRACT

Multiplexed sequential and combinatorial imaging enables the simultaneous detection of multiple biological molecules, e.g. proteins, DNA, or RNA, enabling single-cell spatial multi-omics measurements at sub-cellular resolution. Recently, we designed a multiplexed imaging approach (Hi-M) to study the spatial organization of chromatin in single cells. In order to enable Hi-M sequential imaging on custom microscope setups, we developed Qudi-HiM, a modular software package written in Python 3. Qudi-HiM contains modules to automate the robust acquisition of thousands of three-dimensional multicolor microscopy images, the handling of microfluidics devices, and the remote monitoring of ongoing acquisitions and real-time analysis. In addition, Qudi-HiM can be used as a stand-alone tool for other imaging modalities.

4.
Stress Biol ; 2(1): 36, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-37676549

ABSTRACT

Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.

5.
Cells ; 10(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944040

ABSTRACT

Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.


Subject(s)
Aphids/physiology , Calcium/metabolism , Plant Leaves/parasitology , Plant Leaves/virology , Plant Viruses/physiology , Animals , Arabidopsis/genetics , Arabidopsis/parasitology , Arabidopsis/virology , Arabidopsis Proteins/metabolism , Calcium Signaling , Caulimovirus/physiology , Mutation/genetics , Plant Leaves/genetics
7.
Plant Physiol ; 185(3): 663-681, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793925

ABSTRACT

In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Mitochondrial Membranes/metabolism , Plants/metabolism , Signal Transduction/physiology , rho GTP-Binding Proteins/metabolism
8.
Nat Protoc ; 16(3): 1600-1628, 2021 03.
Article in English | MEDLINE | ID: mdl-33627844

ABSTRACT

Super-resolution microscopy techniques have pushed the limit of optical imaging to unprecedented spatial resolutions. However, one of the frontiers in nanoscopy is its application to intact living organisms. Here we describe the implementation and application of super-resolution single-particle tracking photoactivated localization microscopy (sptPALM) to probe single-molecule dynamics of membrane proteins in live roots of the model plant Arabidopsis thaliana. We first discuss the advantages and limitations of sptPALM for studying the diffusion properties of membrane proteins and compare this to fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). We describe the technical details for handling and imaging the samples for sptPALM, with a particular emphasis on the specificity of imaging plant cells, such as their thick cell walls or high degree of autofluorescence. We then provide a practical guide from data collection to image analyses. In particular, we introduce our sptPALM_viewer software and describe how to install and use it for analyzing sptPALM experiments. Finally, we report an R statistical analysis pipeline to analyze and compare sptPALM experiments. Altogether, this protocol should enable plant researchers to perform sptPALM using a benchmarked reproducible protocol. Routinely, the procedure takes 3-4 h of imaging followed by 3-4 d of image processing and data analysis.


Subject(s)
Membrane Proteins/metabolism , Microscopy, Fluorescence/methods , Single Molecule Imaging/methods , Arabidopsis/metabolism , Diffusion , Fluorescence Recovery After Photobleaching/methods , Membrane Proteins/isolation & purification , Optical Imaging/methods , Plant Cells/chemistry , Plants/chemistry , Plants/metabolism , Spectrometry, Fluorescence/methods
9.
Plant Physiol ; 187(4): 1839-1855, 2021 12 04.
Article in English | MEDLINE | ID: mdl-35235669

ABSTRACT

Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.


Subject(s)
Biological Transport/physiology , Cell Membrane/physiology , Cell Membrane/ultrastructure , Microscopy, Fluorescence/methods , Plant Physiological Phenomena , Signal Transduction/physiology
10.
Curr Biol ; 30(23): 4654-4664.e4, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33035478

ABSTRACT

In the course of their growth and development, plants have to constantly perceive and react to their environment. This is achieved in cells by the coordination of complex combinatorial signaling networks. However, how signal integration and specificity are achieved in this context is unknown. With a focus on the hyperosmotic stimulus, we use live super-resolution light imaging methods to demonstrate that a Rho GTPase, Rho-of-Plant 6 (ROP6), forms stimuli-dependent nanodomains within the plasma membrane (PM). These nanodomains are necessary and sufficient to transduce production of reactive oxygen species (ROS) that act as secondary messengers and trigger several plant adaptive responses to osmotic constraints. Furthermore, osmotic signal triggers interaction between ROP6 and two NADPH oxidases that subsequently generate ROS. ROP6 nanoclustering is also needed for cell surface auxin signaling, but short-time auxin treatment does not induce ROS accumulation. We show that auxin-induced ROP6 nanodomains, unlike osmotically driven ROP6 clusters, do not recruit the NADPH oxidase, RBOHD. Together, our results suggest that Rho GTPase nano-partitioning at the PM ensures signal specificity downstream of independent stimuli.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Monomeric GTP-Binding Proteins/metabolism , Osmotic Pressure/physiology , Adaptation, Physiological , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Indoleacetic Acids/metabolism , Monomeric GTP-Binding Proteins/genetics , NADPH Oxidases/metabolism , Osmosis/physiology , Plant Roots/cytology , Plant Roots/metabolism , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Signal Transduction/physiology
11.
Sci Rep ; 9(1): 9374, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253881

ABSTRACT

Turnip mosaic virus (TuMV, family Potyviridae) and cauliflower mosaic virus (CaMV, family Caulimoviridae) are transmitted by aphid vectors. They are the only viruses shown so far to undergo transmission activation (TA) immediately preceding plant-to-plant propagation. TA is a recently described phenomenon where viruses respond to the presence of vectors on the host by rapidly and transiently forming transmissible complexes that are efficiently acquired and transmitted. Very little is known about the mechanisms of TA and on whether such mechanisms are alike or distinct in different viral species. We use here a pharmacological approach to initiate the comparison of TA of TuMV and CaMV. Our results show that both viruses rely on calcium signaling and reactive oxygen species (ROS) for TA. However, whereas application of the thiol-reactive compound N-ethylmaleimide (NEM) inhibited, as previously shown, TuMV transmission it did not alter CaMV transmission. On the other hand, sodium azide, which boosts CaMV transmission, strongly inhibited TuMV transmission. Finally, wounding stress inhibited CaMV transmission and increased TuMV transmission. Taken together, the results suggest that transmission activation of TuMV and CaMV depends on initial calcium and ROS signaling that are generated during the plant's immediate responses to aphid manifestation. Interestingly, downstream events in TA of each virus appear to diverge, as shown by the differential effects of NEM, azide and wounding on TuMV and CaMV transmission, suggesting that these two viruses have evolved analogous TA mechanisms.


Subject(s)
Aphids/virology , Caulimovirus/drug effects , Disease Transmission, Infectious , Plant Diseases/virology , Plant Viruses/drug effects , Potyvirus/drug effects , Animals , Disease Transmission, Infectious/prevention & control , Ethylmaleimide/pharmacology , Insect Vectors , Models, Biological , Stress, Physiological
12.
Science ; 364(6435): 57-62, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30948546

ABSTRACT

Rho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work shows that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Monomeric GTP-Binding Proteins/metabolism , Phosphatidylserines/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Membrane/chemistry , Cell Membrane/metabolism , Endocytosis/genetics , Gene Expression Regulation, Plant , Gravitropism/genetics , Indoleacetic Acids/metabolism , Monomeric GTP-Binding Proteins/genetics , Phosphatidylserines/pharmacology , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , Signal Transduction , Single Molecule Imaging
13.
Plant Physiol ; 179(4): 1581-1593, 2019 04.
Article in English | MEDLINE | ID: mdl-30718348

ABSTRACT

Physiological acclimation of plants to an everchanging environment is governed by complex combinatorial signaling networks that perceive and transduce various abiotic and biotic stimuli. Reactive oxygen species (ROS) serve as one of the second messengers in plant responses to hyperosmotic stress. The molecular bases of ROS production and the primary cellular processes that they target were investigated in the Arabidopsis (Arabidopsis thaliana) root. Combined pharmacological and genetic approaches showed that the RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) pathway and an additional pathway involving apoplastic ascorbate and iron can account for ROS production upon hyperosmotic stimulation. The two pathways determine synergistically the rate of membrane internalization, within minutes after activation. Live superresolution microscopy revealed at single-molecule scale how ROS control specific diffusion and nano-organization of membrane cargo proteins. In particular, ROS generated by RBOHs initiated clustering of the PLASMA MEMBRANE INTRINSIC PROTEIN2;1 aquaporin and its removal from the plasma membrane. This process is contributed to by clathrin-mediated endocytosis, with a positive role of RBOH-dependent ROS, specifically under hyperosmotic stress.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Osmotic Pressure , Reactive Oxygen Species/metabolism , Aquaporins/analysis , Aquaporins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/analysis , Arabidopsis Proteins/chemistry , Endocytosis , Protein Domains , Signal Transduction
14.
Plant Cell ; 31(2): 417-429, 2019 02.
Article in English | MEDLINE | ID: mdl-30674691

ABSTRACT

The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity (K ros) of Arabidopsis (Arabidopsis thaliana) rosettes displays a genuine circadian rhythmicity with a peak around midday. Combined immunological and proteomic approaches revealed that phosphorylation at two C-terminal sites (Ser280, Ser283) of PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (AtPIP2;1), a major plasma membrane aquaporin in rosettes, shows circadian oscillations and is correlated with K ros Transgenic expression of phosphodeficient and phosphomimetic forms of this aquaporin indicated that AtPIP2;1 phosphorylation is necessary but not sufficient for K ros regulation. We investigated the supporting role of 14-3-3 proteins, which are known to interact with and regulate phosphorylated proteins. Individual knockout plants for five 14-3-3 protein isoforms expressed in rosettes lacked circadian activation of K ros Two of these [GRF4 (14-3-3Phi); GRF10 (14-3-3Epsilon)] showed direct interactions with AtPIP2;1 in the plant and upon coexpression in Xenopus laevis oocytes and activated AtPIP2;1, preferentially when the latter was phosphorylated at its two C-terminal sites. We propose that this regulatory mechanism assists in the activation of phosphorylated AtPIP2;1 during circadian regulation of K ros.


Subject(s)
14-3-3 Proteins/metabolism , Aquaporins/metabolism , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , 14-3-3 Proteins/genetics , Aquaporins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phosphorylation/genetics , Phosphorylation/physiology , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Proteomics/methods
15.
Proc Natl Acad Sci U S A ; 115(25): 6488-6493, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29866831

ABSTRACT

Building a proton gradient across a biological membrane and between different tissues is a matter of great importance for plant development and nutrition. To gain a better understanding of proton distribution in the plant root apoplast as well as across the plasma membrane, we generated Arabidopsis plants expressing stable membrane-anchored ratiometric fluorescent sensors based on pHluorin. These sensors enabled noninvasive pH-specific measurements in mature root cells from the medium-epidermis interface up to the inner cell layers that lie beyond the Casparian strip. The membrane-associated apoplastic pH was much more alkaline than the overall apoplastic space pH. Proton concentration associated with the plasma membrane was very stable, even when the growth medium pH was altered. This is in apparent contradiction with the direct connection between root intercellular space and the external medium. The plasma membrane-associated pH in the stele was the most preserved and displayed the lowest apoplastic pH (6.0 to 6.1) and the highest transmembrane delta pH (1.5 to 2.2). Both pH values also correlated well with optimal activities of channels and transporters involved in ion uptake and redistribution from the root to the aerial part. In growth medium where ionic content is minimized, the root plasma membrane-associated pH was more affected by environmental proton changes, especially for the most external cell layers. Calcium concentration appears to play a major role in apoplastic pH under these restrictive conditions, supporting a role for the cell wall in pH homeostasis of the unstirred surface layer of plasma membrane in mature roots.


Subject(s)
Cell Membrane/physiology , Plant Roots/physiology , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Biological Transport/physiology , Cell Membrane/metabolism , Cell Wall/physiology , Homeostasis/physiology , Hydrogen-Ion Concentration , Plant Roots/metabolism
16.
Cell ; 167(1): 87-98.e14, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641502

ABSTRACT

Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , MAP Kinase Kinase Kinases/metabolism , Oxygen/metabolism , Plant Roots/metabolism , Potassium/metabolism , Water/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA-Binding Proteins , Gene Expression Regulation, Plant , MAP Kinase Kinase Kinases/genetics , Permeability , Transcription Factors/genetics
17.
Plant Physiol ; 172(2): 1237-1248, 2016 10.
Article in English | MEDLINE | ID: mdl-27543115

ABSTRACT

Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3-) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3- through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3- To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3- stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3- mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Anion Transport Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Meristem/genetics , Meristem/metabolism , Microscopy, Confocal , Mutation , Organ Specificity/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plants, Genetically Modified , RNA Stability/genetics , Reverse Transcriptase Polymerase Chain Reaction , Red Fluorescent Protein
19.
Curr Opin Plant Biol ; 22: 101-107, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25299641

ABSTRACT

Aquaporins are channel proteins present in the plasma membrane and most of intracellular compartments of plant cells. This review focuses on recent insights into the cellular function of plant aquaporins, with an emphasis on the subfamily of Plasma membrane Intrinsic Proteins (PIPs). Whereas PIPs mostly serve as water channels, novel functions associated with their ability to transport carbon dioxide and hydrogen peroxide are emerging. Phosphorylation of PIPs was found to play a central role in the mechanisms that determine their gating and subcellular dynamics. Dynamic tracking of single aquaporin molecules in native plant membranes and the search for cell signaling intermediates acting upstream of aquaporins are now used to dissect their cellular regulation by hormonal and environmental stimuli.


Subject(s)
Aquaporins/metabolism , Plant Cells/metabolism , Biological Transport/physiology , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...