Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37279077

ABSTRACT

Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Increased platelet counts and activation are observed during the course of KD, and elevated platelet counts are associated with higher risks of developing intravenous immunoglobulin resistance and coronary artery aneurysms. However, the role of platelets in KD pathogenesis remains unclear. Here, we analyzed transcriptomics data generated from the whole blood of patients with KD and discovered changes in the expression of platelet-related genes during acute KD. In the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, LCWE injection increased platelet counts and the formation of monocyte-platelet aggregates (MPAs), upregulated the concentration of soluble P-selectin, and increased circulating thrombopoietin and interleukin 6 (IL-6). Furthermore, platelet counts correlated with the severity of cardiovascular inflammation. Genetic depletion of platelets (Mpl-/- mice) or treatment with an anti-CD42b antibody significantly reduced LCWE-induced cardiovascular lesions. Furthermore, in the mouse model, platelets promoted vascular inflammation via the formation of MPAs, which likely amplified IL-1B production. Altogether, our results indicate that platelet activation exacerbates the development of cardiovascular lesions in a murine model of KD vasculitis. These findings enhance our understanding of KD vasculitis pathogenesis and highlight MPAs, which are known to enhance IL-1B production, as a potential therapeutic target for this disorder.


Subject(s)
Mucocutaneous Lymph Node Syndrome , Vasculitis , Animals , Mice , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/drug therapy , Blood Platelets/metabolism , Disease Models, Animal , Inflammation
3.
Front Immunol ; 11: 1623, 2020.
Article in English | MEDLINE | ID: mdl-32733488

ABSTRACT

Countries worldwide have confirmed a staggering number of COVID-19 cases, and it is now clear that no country is immune to the SARS-CoV-2 infection. Resource-poor countries with weaker health systems are struggling with epidemics of their own and are now in a more uncertain situation with this rapidly spreading infection. Frontline healthcare workers are succumbing to the infection in their efforts to save lives. There is an urgency to develop treatments for COVID-19, yet there is limited clinical data on the efficacy of potential drug treatments. Countries worldwide implemented a stay-at-home order to "flatten the curve" and relieve the pressure on the health system, but it is uncertain how this will unfold after the economy reopens. Trehalose, a natural glucose disaccharide, is known to impair viral function through the autophagy system. Here, we propose trehalose as a potential preventative treatment for SARS-CoV-2 infection and transmission.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Post-Exposure Prophylaxis/methods , Pre-Exposure Prophylaxis/methods , Trehalose/therapeutic use , Adult , Aged , Antiviral Agents/pharmacology , Asymptomatic Diseases , Autophagy/drug effects , COVID-19 , Child , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Trehalose/pharmacology , Virus Replication/drug effects , COVID-19 Drug Treatment
4.
Nat Commun ; 11(1): 1613, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32235862

ABSTRACT

In men, the incidence of melanoma rises rapidly after age 50, and nearly two thirds of melanoma deaths are male. The immune system is known to play a key role in controlling the growth and spread of malignancies, but whether age- and sex-dependent changes in immune cell function account for this effect remains unknown. Here, we show that in castrated male mice, neutrophil maturation and function are impaired, leading to elevated metastatic burden in two models of melanoma. Replacement of testosterone effectively normalized the tumor burden in castrated male mice. Further, the aberrant neutrophil phenotype was also observed in prostate cancer patients receiving androgen deprivation therapy, highlighting the evolutionary conservation and clinical relevance of the phenotype. Taken together, these results provide a better understanding of the role of androgen signaling in neutrophil function and the impact of this biology on immune control of malignancies.


Subject(s)
Androgen Antagonists/pharmacology , Neutrophils/immunology , Neutrophils/metabolism , Testosterone/metabolism , Androgen Antagonists/therapeutic use , Androgens , Animals , Antineoplastic Agents/pharmacology , Bone Marrow/pathology , Bone Marrow Transplantation , Disease Models, Animal , Female , Hormone Replacement Therapy/methods , Lung/pathology , Male , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Testosterone/immunology
5.
Front Immunol ; 11: 207, 2020.
Article in English | MEDLINE | ID: mdl-32117318

ABSTRACT

Targeting inflammasome activation to modulate interleukin (IL)-1ß is a promising treatment strategy against acute respiratory distress syndrome and ventilator-induced lung injury (VILI). Autophagy is a key regulator of inflammasome activation in macrophages. Here, we investigated the role of autophagy in the development of acute lung injury (ALI) induced by lipopolysaccharide (LPS) and mechanical ventilation (MV). Two hours before starting MV, 0.2 mg/kg LPS was administered to mice intratracheally. Mice were then placed on high-volume MV (30 ml/kg with 3 cmH2O positive end-expiratory pressure for 2.5 h without additional oxygen application). Mice with myeloid-specific deletion of the autophagic protein ATG16L1 (Atg16l1fl/flLysMCre) suffered severe hypoxemia (adjusted p < 0.05) and increased lung permeability (p < 0.05, albumin level in bronchoalveolar lavage fluid) with significantly higher IL-1ß release into alveolar space (p < 0.05). Induction of autophagy by fasting-induced starvation led to improved arterial oxygenation (adjusted p < 0.0001) and lung permeability (p < 0.05), as well as significantly suppressed IL-1ß production (p < 0.01). Intratracheal treatment with anti-mouse IL-1ß monoclonal antibody (mAb; 2.5 mg/kg) significantly improved arterial oxygenation (adjusted p < 0.01) as well as lung permeability (p < 0.05). On the other hand, deletion of IL-1α gene or use of anti-mouse IL-1α mAb (2.5 mg/kg) provided no significant protection, suggesting that the LPS and MV-induced ALI is primarily dependent on IL-1ß, but independent of IL-1α. These observations suggest that autophagy has a protective role in controlling inflammasome activation and production of IL-1ß, which plays a critical role in developing hypoxemia and increased lung permeability in LPS plus MV-induced acute lung injury.


Subject(s)
Autophagy/physiology , Hypoxia/prevention & control , Inflammasomes/physiology , Interleukin-1beta/physiology , Lipopolysaccharides/toxicity , Lung/metabolism , Ventilator-Induced Lung Injury/etiology , Animals , Down-Regulation , Interleukin-18/physiology , Male , Mice , Mice, Inbred C57BL , Permeability , TOR Serine-Threonine Kinases/physiology , Trehalose/therapeutic use , Ventilator-Induced Lung Injury/immunology
6.
Transl Psychiatry ; 9(1): 140, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31000694

ABSTRACT

The inability to discriminate between threat and safety is a hallmark of stress-induced psychiatric disorders, including post-traumatic stress disorder. Dorsolateral bed nucleus of the stria terminalis (BNSTdl) is critically involved in the modulation of fear and anxiety, and has been proposed to regulate discrimination between signaled (cued, predictable) and unsignaled (unpredictable) threats. We recently showed that oxytocin receptors (OTRs) in the BNSTdl facilitate acquisition of cued fear measured in a fear-potentiated startle (FPS). In the current study, using in vivo microdialysis in awake male Sprague-Dawley rats, a double immunofluorescence approach with confocal microscopy, as well as retrograde tracing of hypothalamic BNST-projecting OT neurons, we investigated whether fear conditioning activates OT system and modulates OT release. To determine the role of OTR in fear memory formation, we also infused OTR antagonist or OT into the BNSTdl before fear conditioning and measured rats' ability to discriminate between cued (signaled) and non-cued (unsignaled) fear using FPS. In contrast to acute stress (exposure to forced swim stress or foot shocks alone), cued fear conditioning increases OT content in BNSTdl microdialysates. In addition, fear conditioning induces moderate activation of OT neurons in the paraventricular nucleus of the hypothalamus and robust activation in the supraoptic and accessory nuclei of the hypothalamus. Application of OT into the BNSTdl facilitates fear learning toward signaled, predictable threats, whereas blocking OTR attenuates this effect. We conclude that OTR neurotransmission in the BNSTdl plays a pivotal role in strengthening fear learning of temporally predictable, signaled threats.


Subject(s)
Conditioning, Classical , Fear/physiology , Receptors, Oxytocin/metabolism , Reflex, Startle , Septal Nuclei/metabolism , Acoustic Stimulation , Animals , Cues , Male , Oxytocin/physiology , Rats , Rats, Sprague-Dawley , Receptors, Oxytocin/antagonists & inhibitors
7.
Front Neurosci ; 12: 183, 2018.
Article in English | MEDLINE | ID: mdl-29618970

ABSTRACT

The neuropeptide oxytocin (OT) plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl), a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF) receptor type 2 (CRFR2). This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3) or antagonist (Astressin 2B, As2B). To determine if type 1 CRF receptors (CRFR1) are also involved, we used selective CRFR1 antagonist (NBI35965) as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.

8.
Chem Phys Lipids ; 193: 18-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26462904

ABSTRACT

Apolipophorin III (apoLp-III) from Galleria mellonella is a critical apolipoprotein aiding in lipid transport and has gained considerable interest for a role in innate immunity. Both functions are likely related and form the rationale to gain a more detailed understanding of the lipid binding properties of this insect apolipoprotein. Tryptophan residues were introduced at positions 16, 20 or 24, all in helix 1 as it may play a critical role in the initial steps of lipid binding. Steady-state fluorescence analysis showed that each tryptophan displayed unique properties, indicating different environments both in lipid-free as in lipid-bound states, and demonstrating potential for use in lipid binding analysis. While α-helical contents of wild-type and the tryptophan variant proteins were similar, W20- and W24-apoLp-III displayed increased protein stability. These variants were significantly slower in their ability to convert phosphatidylcholine vesicles into discoidal lipoproteins, which was employed as a measure for lipid binding. In contrast, W16-apoLp-III displayed decreased protein stability but an order of magnitude higher rate of discoidal lipoprotein formation. This demonstrates an inverse correlation between protein stability and the ability to convert vesicles in discoidal lipoproteins. The most stable W20-apoLp-III variant displayed comprised LDL binding capabilities, indicating a partial loss of function. Thus, there is a delicate balance between helix bundle stability and the ability to bind lipids, and helix 1 may play a critical role in this process.


Subject(s)
Apolipoproteins/chemistry , Apolipoproteins/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Moths/metabolism , Animals , Apolipoproteins/genetics , Insect Proteins/genetics , Lipid Metabolism , Lipoproteins, LDL/metabolism , Models, Molecular , Moths/chemistry , Moths/genetics , Mutation , Protein Engineering , Protein Stability , Protein Structure, Secondary , Tryptophan/chemistry , Tryptophan/genetics , Tryptophan/metabolism
9.
Biochemistry ; 51(31): 6220-7, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22779761

ABSTRACT

Apolipoproteins are able to associate with lipopolysaccharides (LPS), potentially providing protection against septic shock. To gain insight into the molecular details of this binding interaction, apolipophorin III (apoLp-III) from Galleria mellonella was used as a model. The binding of apoLp-III to LPS was optimal around 37-40 °C, close to the LPS phase transition temperature. ApoLp-III formed complexes with LPS from E. coli (serotype O55:B5) with a diameter of ~20 nm and a molecular weight of ~390 kDa, containing four molecules of apoLp-III and 24 molecules of LPS. The LPS-bound form of the protein was substantially more resistant to guanidine-induced denaturation compared to unbound protein. The denaturation profile displayed a multiphase character with a steep drop in secondary structure between 0 and 1 M guanidine-HCl and a slower decrease above 1 M guanidine-HCl. In contrast, apoLp-III bound to detoxified LPS was only slightly more resistant to guanidine-HCl induced denaturation compared to unbound protein. Analysis of size-exclusion FPLC elution profiles of mixtures of apoLp-III with LPS or detoxified LPS indicated a much weaker binding interaction with detoxified LPS compared to intact LPS. These results indicate that apoLp-III initially interacts with exposed carbohydrate regions, but that the lipid A region is required for a more stable LPS binding interaction.


Subject(s)
Apolipoproteins/metabolism , Insect Proteins/metabolism , Lipopolysaccharides/metabolism , Animals , Apolipoproteins/chemistry , Guanidine/pharmacology , Insect Proteins/chemistry , Klebsiella pneumoniae , Lepidoptera , Protein Binding , Protein Denaturation/drug effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...