Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Lasers Med Sci ; 39(1): 119, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679671

ABSTRACT

Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.


Subject(s)
Brain-Derived Neurotrophic Factor , Disease Models, Animal , Low-Level Light Therapy , Nerve Growth Factor , Nerve Regeneration , Vitamin B Complex , Animals , Rats , Nerve Regeneration/radiation effects , Low-Level Light Therapy/methods , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Male , Laminin/metabolism , Facial Nerve Injuries/radiotherapy , Facial Nerve Injuries/therapy , Rats, Wistar , Myelin Basic Protein/metabolism
2.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614230

ABSTRACT

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Subject(s)
Antiviral Agents , DNA , Ruthenium , Humans , DNA/metabolism , DNA/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Ligands , Animals , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Imines/chemistry , Imines/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/metabolism
3.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37895860

ABSTRACT

Chikungunya virus (CHIKV) belongs to the Alphavirus genus and is responsible for significant outbreaks worldwide. Currently, there is no approved antiviral therapy against CHIKV. Bioactive peptides have great potential for new drug development. Here, we evaluated the antiviral activity of the synthetic peptide GA-Hecate and its analogs PSSct1905 and PSSct1910 against CHIKV infection. Initial screening showed that all three peptides inhibited the CHIKV replication cycle in baby hamster kidney fibroblast cells (BHK-21) and human hepatocarcinoma epithelial cells (Huh-7). GA-Hecate and its analog PSSct1905 were the most active, demonstrating suppression of viral infection by more than 91%. The analog PSSct1905 exhibited a protective effect in cells against CHIKV infection. We also observed that the analogs PSSct1905 and PSSct1910 affected CHIKV entry into both cell lines, inhibiting viral attachment and internalization. Finally, all tested compounds presented antiviral activity on the post-entry steps of CHIKV infection in all cells evaluated. In conclusion, this study highlights the potential of the peptide GA-Hecate and its analogs as novel anti-CHIKV compounds targeting different stages of the viral replication cycle, warranting the development of GA-Hecate-based compounds with broad antiviral activity.

4.
Metabolomics ; 19(8): 68, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37486581

ABSTRACT

INTRODUCTION: Lantana trifolia L. (Verbenaceae) is a shrubby plant. In folk medicine, its leaves are used in the form of infusions and syrups to treat angina, coughs, and colds; they are also applied as tranquilizer. Previous studies have reported the antimicrobial potential of the compounds present in L. trifolia leaves. OBJECTIVES: To report the anti-Candida activities of the fractions obtained from the fruits and leaves of two L. trifolia specimens. METHODS: The L. trifolia fractions were submitted to UFLC-DAD-(+)-ESI-MS/MS, and the data were analyzed by using multivariate statistical tools (PCA, PLS-DA) and spectral similarity analyses based on molecular networking, which aided dereplication of the bioactive compounds. Additionally, NMR analyses were performed to confirm the chemical structure of some of the major compounds in the fractions. RESULTS: The ethyl acetate fractions presented MIC values lower than 100 µg mL-1 against the three Candida strains evaluated herein (C. albicans, C. tropicalis, and C. glabrata). Fractions FrPo AcOEt, FrPe AcOEt, and FrPe nBut had MIC values of 1.46, 2.93, and 2.93 µg mL-1 against C. glabrata, respectively. These values resembled the MIC value of amphotericin B, the positive control (0.5-1.0 µg mL-1), against this same strain. Cytotoxicity was measured and used to calculate the selectivity index. CONCLUSION: On the basis of our data, the most active fractions in the antifungal assay were more selective against C. glabrata than against non-infected cells. The analytical approach adopted here allowed us to annotate 29 compounds, nine of which were bioactive (PLS-DA results) and belong to the class of phenolic compounds.


Subject(s)
Antineoplastic Agents , Lantana , Antifungal Agents/pharmacology , Antifungal Agents/analysis , Tandem Mass Spectrometry , Lantana/chemistry , Fruit , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metabolomics , Plant Leaves/chemistry
5.
Neurotox Res ; 41(5): 459-470, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37266893

ABSTRACT

Pain is a common non-motor symptom of Parkinson's disease (PD), which often occurs in the early disease stages. Despite the high prevalence, it remains inadequately treated. In a hemi-parkinsonian rat model, we aimed to investigate the neurochemical factors involved in orofacial pain development, with a specific focus on pain-related peptides and cannabinoid receptors. We also evaluated whether treadmill exercise could improve orofacial pain and modulate these mechanisms. Rats were unilaterally injected in the striatum with either 6-hydroxydopamine (6-OHDA) or saline. Fifteen days after stereotactic surgery, the animals were submitted to treadmill exercise (EX), or remained sedentary (SED). Pain assessment was performed before the surgical procedure and prior to each training session. Pain-related peptides, substance P (SP), calcitonin gene-related peptide (CGRP), and transient receptor potential vanilloid type 1 (TRPV1) activation and cannabinoid receptor type 1 (CB1) and type 2 (CB2) were evaluated in the trigeminal nucleus. In order to confirm the possible involvement of cannabinoid receptors, we also injected antagonists of CB1 and CB2 receptors. We confirmed the presence of orofacial pain after unilateral 6-OHDA-injection, which improved after aerobic exercise training. We also observed increased pain-related expression of SP, CGRP and TRPV1 and decreased CB1 and CB2 in the trigeminal ganglion and caudal spinal trigeminal nucleus in animals with PD, which was reversed after aerobic exercise training. In addition, we confirm the involvement of cannabinoid receptors since both antagonists decreased the nociceptive threshold of PD animals. These data suggest that aerobic exercise effectively improved the orofacial pain associated with the PD model, and may be mediated by pain-related neuropeptides and cannabinoid receptors in the trigeminal system.


Subject(s)
Neuropeptides , Parkinson Disease , Rats , Animals , Parkinson Disease/complications , Parkinson Disease/metabolism , Calcitonin Gene-Related Peptide/metabolism , Oxidopamine/toxicity , Facial Pain , Disease Models, Animal
6.
Photochem Photobiol Sci ; 22(10): 2315-2327, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37340216

ABSTRACT

PURPOSE: The present study investigates the efficacy of Photobiomodulation (PBM) and Vitamin B Complex (VBC) to relieve pain, both in separately and combined (PBM and VBC). METHODS: Rats with chronic constriction injury of the right infraorbital nerve (CCI-IoN) or Sham surgery were used. PBM was administered at a wavelength of 904 nm and energy density of 6.23 J/cm2 and VBC (containing B1, B6 and B12) subcutaneously, both separately and combined. Behavioral tests were performed to assess mechanical and thermal hypersensitivity before and after CCI and after PBM, VBC, or PBM + VBC. The expression of inflammatory proteins in the trigeminal ganglion and the immunohistochemical alterations of Periaqueductal Gray (PAG) astrocytes and microglia were examined following CCI and treatments. RESULTS: All testeds treatments reversed the painful behavior. The decrease in pain was accompanied by a decrease of Glial Fibrillary Acidic Protein (GFAP), a specific astrocytic marker, and Ionized calcium-binding adaptor molecule 1 (Iba-1), a marker of microglia, and decreased expression of Transient Receptor Potential Vanilloid 1 (TRPV1), Substance P, and Calcitonin Gene-Related Peptide (CGRP) induced by CCI-IoN in PAG and Trigeminal ganglion. Furthermore, both treatments showed a higher expression of Cannabinoid-type 1 (CB1) receptor in the trigeminal ganglion compared to CCI-IoN rats. Our results show that no difference was observed between groups. CONCLUSION: We showed that PBM or VBC regulates neuroinflammation and reduces inflammatory protein expression. However, the combination of PBM and VBC did not enhance the effectiveness of both therapies alone.


Subject(s)
Vitamin B Complex , Rats , Animals , Rats, Sprague-Dawley , Facial Pain/drug therapy
7.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: mdl-37243254

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
8.
Int J Biol Macromol ; 241: 124519, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37085072

ABSTRACT

Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.


Subject(s)
Crotalid Venoms , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Animals , Brazil , Proteins , Antiviral Agents/pharmacology , Antigens, Viral , Snakes , Phospholipases A2
9.
Arch Microbiol ; 205(4): 106, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36881172

ABSTRACT

Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.


Subject(s)
Aedes , Alphavirus , Animals , Humans , Female , Mosquito Vectors , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Arthralgia
10.
J Biol Inorg Chem ; 28(1): 101-115, 2023 02.
Article in English | MEDLINE | ID: mdl-36484824

ABSTRACT

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , Chikungunya Fever/drug therapy , Chikungunya Fever/metabolism , Chikungunya virus/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/pharmacology , Viral Nonstructural Proteins/therapeutic use , Cobalt/pharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
11.
Sci Rep ; 12(1): 21165, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477635

ABSTRACT

Bacterial and viral infections are serious public health issue. Therefore, this study aimed to evaluate the antibacterial, antibiofilm and antiviral potential of the Brazilian Red Propolis (BRP) crude hydroalcoholic extract, fractions, and isolated compounds, as well as their in vivo toxicity. The antibacterial activity was evaluated by determining the Minimum Inhibitory Concentration and the antibiofilm activity by determining the Minimum Inhibitory Concentration of Biofilm (MICB50). The viable bacteria count (Log10 UFC/mL) was also obtained. The antiviral assays were performed by infecting BHK-21 cells with Chikungunya (CHIKV) nanoluc. The toxicity of the BRP was evaluated in the Caenorhabditis elegans animal model. The MIC values for the crude hydroalcoholic extract sample ranged from 3.12 to 100 µg/mL, while fractions and isolated compounds the MIC values ranged from 1.56 to 400 µg/mL.The BRP crude hydroalcoholic extract, oblongifolin B, and gutiferone E presented MICB50 values ranging from 1.56 to 100 µg/mL against monospecies and multispecies biofilms. Neovestitol and vestitol inhibited CHIKV infection by 93.5 and 96.7%, respectively. The tests to evaluate toxicity in C. elegans demonstrated that the BRP was not toxic below the concentrations 750 µg/mL. The results constitute an alternative approach for treating various infectious diseases.


Subject(s)
Propolis , Animals , Propolis/pharmacology , Caenorhabditis elegans , Brazil , Plant Extracts/pharmacology
12.
Dev Psychobiol ; 64(7): e22291, 2022 11.
Article in English | MEDLINE | ID: mdl-36282766

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most important reasons for morbidity and mortality in term-born infants. HIE impacts early somatic, neurological, and motor development including social. To illustrate the damages in the sensorimotor system, an adapted and validated model of neonatal anoxia is used. This study evaluated the sex differences in Wistar rats, neurological reflex, and motor development at the suckling period. Short- and long-term impairments associated with sex differences were observed. In general, anoxic males were more affected in comparison to their control group and to anoxic females. Long-lasting effects of the injury in adolescent rats predominately affected males. Similar to previous studies, we also found a decrease in the number of the substantia nigra cells in both sexes, compared to their control. So far, the results indicate that HIE caused neurobehavioral alterations and asymmetrical motor behavior with brain damage, possibly related to cognitive impairments previously observed at adolescence. These alterations may represent a useful endpoint for studying the efficacy of potential strategies that may improve the developmental consequences of a perinatal asphyxia insult in humans.


Subject(s)
Hypoxia-Ischemia, Brain , Humans , Infant , Pregnancy , Animals , Rats , Female , Male , Rats, Wistar , Animals, Newborn , Disease Models, Animal , Hypoxia
13.
Pharmacol Rep ; 74(4): 752-758, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882766

ABSTRACT

BACKGROUND: Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV). To date there is no antiviral treatment against this infection or licensed vaccine to prevent it. Our study aims to evaluate whether (-)-cassine (1) and (-)-spectaline (2), the main alkaloids of Senna spectabilis, display anti-CHIKV activity. Both compounds have been described to be biologically active against neglected tropical diseases, including malaria, leishmaniasis, and schistosomiasis, which emphasizes that these molecules could be repurposed for chikungunya fever treatment. METHODS: The structures of the isolated compounds 1 and 2 were identified by NMR and HRESIMS analyses, and their antiviral activity against CHIKV was assessed by a dose-response assay employing BHK-21 cells and CHIKV-nanoluc, a recombinant virus carrying the nanoluciferase gene reporter. RESULTS: Compound 1 presented CC50 of 126.5 µM and EC50 of 14.9 µM, while compound 2 presented CC50 of 91.9 µM and EC50 of 8.3 µM. The calculated selectivity index (SI) was 8.5 for 1 and 11.3 for 2. CONCLUSION: The data presented herein show that compounds 1 and 2 have potential for being repurposed as anti-CHIKV drug. Our promising in vitro results encourage further in vitro and in vivo assays. This is the first description of the antiviral activity of compounds 1 and 2 against CHIKV infection, which can impact the development of antiviral drug candidates against chikungunya fever, which sometimes can be debilitating.


Subject(s)
Alkaloids , Chikungunya Fever , Chikungunya virus , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chikungunya Fever/drug therapy , Flowers/chemistry , Luciferases , Piperidines/pharmacology
14.
Int J Dev Neurosci ; 81(8): 686-697, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34342028

ABSTRACT

Neonatal anoxia is a well-known world health problem that results in neurodevelopmental deficits, such as sensory alterations that are observed in patients with cerebral palsy and autism disorder, for which oxygen deprivation is a risk factor. Nociceptive response, as part of the sensory system, has been reported as altered in these patients. To determine whether neonatal oxygen deprivation alters nociceptive sensitivity and promotes medium- and long-term inflammatory feedback in the central nervous system, Wistar rats of around 30 h old were submitted to anoxia (100% nitrogen flux for 25 min) and evaluated on PND23 (postpartum day) and PND90. The nociceptive response was assessed by mechanical, thermal, and tactile tests in the early postnatal and adulthood periods. The lumbar spinal cord (SC, L4-L6) motor neurons (MNs) and the posterior insular cortex neurons were counted and compared with their respective controls after anoxia. In addition, we evaluated the possible effect of anoxia on the expression of astrocytes in the SC at adulthood. The results showed increased nociceptive responses in both males and females submitted to anoxia, although these responses were different according to the nociceptive stimulus. A decrease in MNs in adult anoxiated females and an upregulation of GFAP expression in the SC were observed. In the insular cortex, a decrease in the number of cells of anoxiated males was observed in the neonatal period. Our findings suggest that oxygen-deprived nervous systems in rats may affect their response at the sensorimotor pathways and respective controlling centers with sex differences, which were related to the used stimulus.


Subject(s)
Hypoxia/physiopathology , Insular Cortex/physiopathology , Nociception/physiology , Spinal Cord/physiopathology , Animals , Female , Male , Neurons/physiology , Rats , Rats, Wistar , Sex Factors
15.
Sci Rep ; 11(1): 8717, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888774

ABSTRACT

Chikungunya virus (CHIKV) is the etiologic agent of Chikungunya fever, a globally spreading mosquito-borne disease. There is no approved antiviral or vaccine against CHIKV, highlighting an urgent need for novel therapies. In this context, snake venom proteins have demonstrated antiviral activity against several viruses, including arboviruses which are relevant to public health. In particular, the phospholipase A2CB (PLA2CB), a protein isolated from the venom of Crotalus durissus terrificus was previously shown to possess anti-inflammatory, antiparasitic, antibacterial and antiviral activities. In this study, we investigated the multiple effects of PLA2CB on the CHIKV replicative cycle in BHK-21 cells using CHIKV-nanoluc, a marker virus carrying nanoluciferase reporter. The results demonstrated that PLA2CB possess a strong anti-CHIKV activity with a selectivity index of 128. We identified that PLA2CB treatment protected cells against CHIKV infection, strongly impairing virus entry by reducing adsorption and post-attachment stages. Moreover, PLA2CB presented a modest yet significant activity towards post-entry stages of CHIKV replicative cycle. Molecular docking calculations indicated that PLA2CB may interact with CHIKV glycoproteins, mainly with E1 through hydrophobic interactions. In addition, infrared spectroscopy measurements indicated interactions of PLA2CB and CHIKV glycoproteins, corroborating with data from in silico analyses. Collectively, this data demonstrated the multiple antiviral effects of PLA2CB on the CHIKV replicative cycle, and suggest that PLA2CB interacts with CHIKV glycoproteins and that this interaction blocks binding of CHIKV virions to the host cells.


Subject(s)
Chikungunya virus/drug effects , Crotalid Venoms/enzymology , Glycoproteins/metabolism , Phospholipases A2/pharmacology , Virus Internalization/drug effects , Animals , Cell Line , Chikungunya virus/physiology , Cricetinae , Crotalus , Molecular Docking Simulation , Phospholipases A2/isolation & purification , Phospholipases A2/metabolism , Protein Binding , Virus Replication/drug effects
16.
Behav Brain Res ; 390: 112690, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32422237

ABSTRACT

Chronic neuropathic pain resulting from damage to the central or peripheral nervous system is a prevalent and debilitating condition affecting 7-18% of the population. Symptoms include spontaneous pain, dysesthesia, paresthesia, allodynia and hyperalgesia. The reported sensory symptoms are comorbid with behavioral disabilities such as insomnia and depression. Neonatal anoxia, a worldwide clinical problem in both neonatal and pediatric care, causes long-term deficits similar to those mentioned. The effect of neonatal anoxia on the maturation of nociceptive pathways has been sparsely explored. To address this question and to determine whether the effects differ depending on sex, a neonatal anoxia model was used in which Wistar rat pups approximately 30 h old and of both sexes were placed in a chamber with 100% nitrogen flow at 3.5 L/min for 25 min at 36 °C ± 1 °C. After recovery, the animals (n = 16 in each group (anoxia and control; males and females)) were returned to their mothers. The control animals were subjected to the same conditions, but no gas exchange was performed. At postnatal day (PND) 18 and PND43, the animals were subjected to pain testing by stimulation of the hind paws with von Frey monofilaments. The results revealed a significant reduction (approximately 50%) in the pain threshold in the animals exposed to anoxia in comparison with their respective controls. The pain threshold increased between PND18 and PND43. A sex-based difference was observed in the male control group at PND18. Histological analysis revealed decreased cell numbers in the ventral posterolateral thalamic nucleus (VPL), with sex differences. These results demonstrate the long-lasting negative impact of neonatal anoxia and indicate the relevance of performing suitable approaches taking in consideration the possible sex differences.


Subject(s)
Hyperalgesia/physiopathology , Hypoxia/complications , Nociception/physiology , Nociceptive Pain/physiopathology , Pain Threshold/physiology , Thalamic Nuclei/pathology , Age Factors , Animals , Animals, Newborn , Disease Models, Animal , Female , Male , Pregnancy , Rats , Sex Characteristics , Thalamic Nuclei/cytology
17.
Acta Trop ; 207: 105490, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32333884

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted virus of special concern as it causes Chikungunya fever, characterized by an acute febrile illness, rash, and arthralgia that can progress to chronic and debilitating arthritic symptoms. The effects of climate change on the geographic distribution of the mosquito vector has the potential to expose more of the globe to this virus. No antiviral agents or vaccines are currently available against CHIKV infection and the development of novel therapies that may lead to a future treatment is therefore necessary. In this context, the ADP-ribose binding site of the CHIKV nsP3 macro domain has been reported as a potential target for the development of antivirals. Mutations in the ADP-ribose binding site demonstrated decreased viral replication in cell culture and reduced virulence. In this study, 48,750 small molecules were screened in silico for their ability to bind to the ADP-ribose binding site of the CHIKV nsP3 macro domain. From this in silico analysis, 12 molecules were selected for in vitro analysis using a CHIKV subgenomic replicon in Huh-7 cells. Cell viability and CHIKV replication were evaluated and molecules C5 and C13 demonstrated 53 and 66% inhibition of CHIKV replication, respectively. By using a CHIKV-Dual luciferase replicon contain two reporter genes, we also demonstrated that the treatment with either compounds are probably interfering in the early replication rather than after RNA replication has occurred.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Binding Sites , Cell Line, Tumor , Humans , Mice , Molecular Docking Simulation , Protein Domains , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
18.
Viruses ; 12(3)2020 02 29.
Article in English | MEDLINE | ID: mdl-32121393

ABSTRACT

The worldwide outbreaks of the chikungunya virus (CHIKV) in the last years demonstrated the need for studies to screen antivirals against CHIKV. The virus was first isolated in Tanzania in 1952 and was responsible for outbreaks in Africa and Southwest Asia in subsequent years. Between 2007 and 2014, some cases were documented in Europe and America. The infection is associated with low rates of death; however, it can progress to a chronic disease characterized by severe arthralgias in infected patients. This infection is also associated with Guillain-Barré syndrome. There is no specific antivirus against CHIKV. Treatment of infected patients is palliative and based on analgesics and non-steroidal anti-inflammatory drugs to reduce arthralgias. Several natural molecules have been described as antiviruses against viruses such as dengue, yellow fever, hepatitis C, and influenza. This review aims to summarize the natural compounds that have demonstrated antiviral activity against chikungunya virus in vitro.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , Chikungunya Fever/drug therapy , Chikungunya virus/physiology , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Structure-Activity Relationship , Virus Replication/drug effects
19.
Front Microbiol ; 11: 608924, 2020.
Article in English | MEDLINE | ID: mdl-33384677

ABSTRACT

Chikungunya fever is a disease caused by the Chikungunya virus (CHIKV) that is transmitted by the bite of the female of Aedes sp. mosquito. The symptoms include fever, muscle aches, skin rash, and severe joint pains. The disease may develop into a chronic condition and joint pain for months or years. Currently, there is no effective antiviral treatment against CHIKV infection. Treatments based on natural compounds have been widely studied, as many drugs were produced by using natural molecules and their derivatives. Alpha-phellandrene (α-Phe) is a naturally occurring organic compound that is a ligand for ruthenium, forming the organometallic complex [Ru2Cl4(p-cymene)2] (RcP). Organometallic complexes have shown promising as candidate molecules to a new generation of compounds that presented relevant biological properties, however, there is a lack of knowledge concerning the anti-CHIKV activity of these complexes. The present work evaluated the effects of the RcP and its precursors, the hydrate ruthenium(III) chloride salt (RuCl3⋅xH2O) (Ru) and α-Phe, on CHIKV infection in vitro. To this, BHK-21 cells were infected with CHIKV-nanoluciferase (CHIKV-nanoluc), a viral construct harboring the nanoluciferase reporter gene, at the presence or absence of the compounds for 16 h. Cytotoxicity and impact on infectivity were analyzed. The results demonstrated that RcP exhibited a strong therapeutic potential judged by the selective index > 40. Antiviral effects of RcP on different stages of the CHIKV replicative cycle were investigated; the results showed that it affected early stages of virus infection reducing virus replication by 77% at non-cytotoxic concentrations. Further assays demonstrated the virucidal activity of the compound that completely blocked virus infectivity. In silico molecular docking calculations suggested different binding interactions between aromatic rings of RcP and the loop of amino acids of the E2 envelope CHIKV glycoprotein mainly through hydrophobic interactions. Additionally, infrared spectroscopy spectral analysis indicated interactions of RcP with CHIKV glycoproteins. These data suggest that RcP may act on CHIKV particles, disrupting virus entry to the host cells. Therefore, RcP may represent a strong candidate for the development of anti-CHIKV drugs.

20.
Brain Res ; 1687: 60-65, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29496478

ABSTRACT

Chronic constriction injury (CCI) of the sciatic nerve elicits changes in neuropeptide expression on the dorsal root ganglia (DRG). The neural mobilization (NM) technique is a noninvasive method that has been proven clinically effective in reducing pain. The aim of this study was to analyze the expression of substance P, transient receptor potential vanilloid 1 (TRPV1) and opioid receptors in the DRG of rats with chronic constriction injury and to compare it to animals that received NM treatment. CCI was performed on adult male rats. Each animal was submitted to 10 sessions of neural mobilization every other day, starting 14 days after the CCI injury. At the end of the sessions, the DRG (L4-L6) were analyzed using Western blot assays for substance P, TRPV1 and opioid receptors (µ-opioid receptor, δ-opioid receptor and κ-opioid receptor). We observed a decreased substance P and TRPV1 expression (48% and 35%, respectively) and an important increase of µ-opioid receptor expression (200%) in the DRG after NM treatment compared to control animals. The data provide evidence that NM promotes substantial changes in neuropeptide expression in the DRG; these results may provide new options for treating neuropathic pain.


Subject(s)
Gene Expression Regulation/physiology , Musculoskeletal Manipulations/methods , Neuralgia/rehabilitation , Neuralgia/therapy , Neurons/metabolism , Neuropeptides/metabolism , Animals , Disease Models, Animal , Ganglia, Spinal/pathology , Male , Muscle Strength/physiology , Nerve Tissue Proteins/metabolism , Neuralgia/pathology , Neuropeptides/genetics , Rats , Rats, Wistar , Receptors, Opioid/metabolism , Substance P/metabolism , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...