Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Future Med Chem ; 15(16): 1469-1489, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37650735

ABSTRACT

Background: Chagas disease is a life-threatening illness caused by Trypanosoma cruzi. The involvement of serine-/arginine-rich protein kinase in the T. cruzi life cycle is significant. Aims: To synthesize, characterize and evaluate the trypanocidal activity of diamides inspired by kinase inhibitor, SRPIN340. Material & Methods: Synthesis using a three-step process and characterization by infrared, nuclear magnetic resonance and high-resolution mass spectrometry were conducted. The selectivity index was obtained by the ratio of CC50/IC50 in two in vitro models. The most active compound, 3j, was evaluated using in vitro cytokine assays and assessing in vivo trypanocidal activity. Results: 3j activity in the macrophage J774 lineage showed an anti-inflammatory profile, and mice showed significantly reduced parasitemia and morbidity at low compound dosages. Conclusion: Novel diamide is active against T. cruzi in vitro and in vivo.

2.
Life (Basel) ; 13(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37511803

ABSTRACT

Lung cancer is the leading cause of cancer mortality worldwide, and malignant melanomas are highly lethal owing to their elevated metastatic potential. Despite improvements in therapeutic approaches, cancer treatments are not completely effective. Thus, new drug candidates are continuously sought. We synthesized mono- and di-methoxylated cinnamic acid esters and investigated their antitumor potential. A cell viability assay was performed to identify promising substances against A549 (non-small-cell lung cancer) and SK-MEL-147 (melanoma) cells. (E)-2,5-dimethoxybenzyl 3-(4-methoxyphenyl)acrylate (4m), a monomethoxylated cinnamic acid derivative, was identified as the lead antitumor compound, and its antitumor potential was deeply investigated. Various approaches were employed to investigate the antiproliferative (clonogenic assay and cell cycle analysis), proapoptotic (annexin V assay), and antimigratory (wound-healing and adhesion assays) activities of 4m on A549 cells. In addition, western blotting was performed to explore its mechanism of action. We demonstrated that 4m inhibits the proliferation of A549 by promoting cyclin B downregulation and cell cycle arrest at G2/M. Antimigratory and proapoptotic activities of 4m on A549 were also observed. The antitumor potential of 4m involved its ability to modulate the mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway once phosphorylated-ERK expression was considerably reduced in response to treatment. Our findings demonstrate that 4m is a promising anticancer drug candidate.

3.
AAPS PharmSciTech ; 24(6): 156, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37468721

ABSTRACT

This study sought to develop polymer-lipid hybrid solid dispersions containing the poorly soluble drug lopinavir (LPV) by hot-melt extrusion (HME). Hence, the lipid and polymeric adjuvants were selected based on miscibility and compatibility studies. Film casting was used to assess the miscibility, whereas thermal, spectroscopic, and chromatographic analyses were employed to evaluate drug-excipient compatibility. Extrudates were obtained and characterized by physicochemical tests, including in vitro LPV dissolution. Preformulation studies led to select the most appropriate materials, i.e., the polymers PVPVA and Soluplus®, the plasticizers polyethylene glycol 400 and Kolliphor® HS15, phosphatidylcholine, and sodium taurodeoxycholate. HME processing did not result in LPV degradation and significantly increased entrapment efficiency (93.8% ± 2.8 for Soluplus® extrudate against 19.8% ± 0.5 of the respective physical mixture). LPV dissolution was also increased from the extrudates compared to the corresponding physical mixtures (p < 0.05). The dissolution improvement was considerably greater for the Soluplus®-based formulation (24.3 and 2.8-fold higher than pure LPV and PVPVA-based extrudate after 120 min, respectively), which can be attributed to the more pronounced effects of HME processing on the average size and LPV solid-state properties in the Soluplus® extrudates. Transmission electron microscopy and chemical microanalysis suggested that the polymer-lipid interactions in Soluplus®-based formulation depended on thermal processing.


Subject(s)
Polyethylene Glycols , Polymers , Polymers/chemistry , Drug Compounding/methods , Solubility , Polyethylene Glycols/chemistry , Drug Delivery Systems , Lipids , Hot Temperature
4.
Mol Divers ; 27(1): 281-297, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35441971

ABSTRACT

Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 µmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Humans , Cyclohexanones , Plant Diseases/microbiology , Fungi , Plants
5.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142698

ABSTRACT

Modified release systems depend on the selection of an appropriate agent capable of controlling the release of the drug, sustaining the therapeutic action over time, and/or releasing the drug at the level of a particular tissue or target organ. Polyethylene glycol 4000 (PEG 4000) is commonly employed in drug release formulations while polymethyl methacrylate (PMMA) is non-toxic and has a good solubility in organic solvents. This study aimed at the incorporation of ketoconazole in PMMA-g-PEG 4000 and its derivatives, thus evaluating its release profile and anti-Candida albicans and cytotoxic activities. Ketoconazole was characterized and incorporated into the copolymers. The ketoconazole incorporated in the copolymer and its derivatives showed an immediate release profile. All copolymers with ketoconazole showed activity against Candida albicans and were non-toxic to human cells in the entire concentration tested.


Subject(s)
Candida albicans , Ketoconazole , Antifungal Agents/pharmacology , Humans , Ketoconazole/pharmacology , Polyethylene Glycols , Polymethyl Methacrylate , Solvents
6.
Dalton Trans ; 51(32): 12258-12270, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35895288

ABSTRACT

Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.

7.
J Adv Res ; 38: 285-298, 2022 05.
Article in English | MEDLINE | ID: mdl-35572397

ABSTRACT

Introduction: Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives: The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods: The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results: Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion: The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.


Subject(s)
Calixarenes , Cocaine , Vaccines , Animals , Calixarenes/chemistry , Calixarenes/pharmacology , Haptens , Tissue Distribution
8.
AAPS PharmSciTech ; 22(8): 254, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34668093

ABSTRACT

This study sought to investigate the influence of formulation and process factors of the high shear mixing (HSM) on the properties of solid self-emulsifying drug delivery systems (S-SEDDS) containing the model drug carvedilol (CAR). Firstly, liquid SEDDS (L-SEDDS) were prepared by mixing castor oil with different proportions of surfactant (Solutol or Kolliphor RH40) and cosolvent (Transcutol or PEG400). A miscible L-SEDDS with high drug solubility (124.3 mg/g) was selected and gave rise to 10% (m/m) CAR loaded-emulsion with reduced particle size. Then, a factorial experimental design involving five component's concentration and two process factors was used to study the solidification of the selected L-SEDDS by HSM. CAR content, diffractometric profile, and in vitro dissolution were determined. Morphological and flow analyses were also performed. Porous and spherical particles with mean sizes ranging from 160 to 210 µm were obtained. Particle size was not affected by any formulation factor studied. Powder flowability, in turn, was influenced by L-SEDDS and crospovidone concentration. CAR in vitro dissolution from S-SEDDS was significantly increased compared to the drug as supplied and was equal (pH 1.2) or lower (pH 6.8) than that determined for L-SEDDS. Colloidal silicon dioxide decreased drug dissolution, whereas an increase in water-soluble diluent lactose and L-SEDDS concentration increased CAR dissolution. The proper selection of liquid and solid constituents proved to be crucial to developing an S-SEDDS by HSM. Indeed, the results obtained here using experimental design contribute to the production of S-SEDDS using an industrially viable process.


Subject(s)
Drug Delivery Systems , Excipients , Drug Liberation , Emulsions , Solubility
9.
Inorg Chem ; 60(9): 6176-6190, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33861078

ABSTRACT

The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the µ-κ2O,O':κO″ coordination mode and the other two with the µ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).

10.
J Org Chem ; 85(23): 15622-15630, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33175538

ABSTRACT

The use of star anise oil from a natural source as a dienophile in the multicomponent double Povarov reaction (MCPRs) to produce highly substituted julolidines with diverse technological applications is described. Within the framework of green chemistry, these MCPRs have many advantages such as (i) use of water in the reaction, (ii) creation of up to six bonds in one sequence, (iii) water as a sole waste, (iv) 100% of carbon economy, (v) a metal-free process, and (vi) nontoxic and reusable organocatalysts. These advantages, along with a simple workup procedure, make this protocol greener for the synthesis of julolidines.

11.
J Am Chem Soc ; 141(8): 3400-3403, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30702877

ABSTRACT

We report a novel bright deep-blue-emitting crystal form based on a simple cadmium coordination polymer with an impressive external photoluminescence quantum yield of 75.4(9)%.

12.
Redox Biol ; 20: 182-194, 2019 01.
Article in English | MEDLINE | ID: mdl-30359932

ABSTRACT

Piplartine (piperlongumine) is a plant-derived compound found in some Piper species that became a novel potential antineoplastic agent. In the present study, we synthesized a novel platinum complex containing a piplartine derivative cis-[PtCl(PIP-OH)(PPh3)2]PF6 (where, PIP-OH = piplartine demethylated derivative; and PPh3 = triphenylphosphine) with enhanced cytotoxicity in different cancer cells, and investigated its apoptotic action in human promyelocytic leukemia HL-60 cells. The structure of PIP-OH ligand was characterized by X-ray crystallographic analysis and the resulting platinum complex was characterized by infrared, molar conductance measurements, elemental analysis and NMR experiments. We found that the complex is more potent than piplartine in a panel of cancer cell lines. Apoptotic cell morphology, increased internucleosomal DNA fragmentation, without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization and caspase-3 activation were observed in complex-treated HL-60 cells. Treatment with the complex also caused a marked increase in the production of reactive oxygen species (ROS), and the pretreatment with N-acetyl-L-cysteine, an antioxidant, reduced the complex-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. Important, pretreatment with a p38 MAPK inhibitor (PD 169316) and MEK inhibitor (U-0126), known to inhibit ERK1/2 activation, also prevented the complex-induced apoptosis. The complex did not induce DNA intercalation in cell-free DNA assays. In conclusion, the complex exhibits more potent cytotoxicity than piplartine in a panel of different cancer cells and triggers ROS/ERK/p38-mediated apoptosis in HL-60 cells.


Subject(s)
Apoptosis/drug effects , Leukemia, Promyelocytic, Acute/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Platinum/pharmacology , Caspases/metabolism , Cell Survival/drug effects , HL-60 Cells , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/pathology , Ligands , Membrane Potential, Mitochondrial/drug effects , Models, Molecular , Molecular Structure , Platinum/chemistry , Reactive Oxygen Species/metabolism
13.
J Org Chem ; 83(7): 3516-3528, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29481076

ABSTRACT

The design and synthesis of biomass-derived triazoles and the in vitro evaluation as potential anticancer agents are described. The discovery of base-catalyzed retro-aza-Michael//aza-Michael isomerizations allowed the exploration of the chemical space by affording novel types of triazoles, difficult to obtain otherwise. Following this strategy, 2,4-disubstituted 1,2,3-triazoles could be efficiently obtained from the corresponding 1,4-disubstituted analogues.

14.
J Org Chem ; 83(4): 1761-1771, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29337547

ABSTRACT

A new one-pot cascade reaction-based application of Povarov reactions with a p-sulfonic acid calix[4]arene catalyst for the synthesis of a series of 34 julolidine derivatives with substituents at C8 or C9 in good to excellent yields is reported. These microwave-assisted reactions proceeded efficiently, had short reaction times, were metal-free, were low cost, and used an inexpensive, easily available and nontoxic catalyst. These advantages, along with a simple workup procedure, make this protocol a very efficient and green alternative to the traditional methods for constructing these types of N-heterocyclic skeletons. In addition, this protocol allows the formation of julolidine structures, which requires the construction of four new C-C bonds and two C-N bonds. A mechanism for the Povarov reaction involving a stepwise sequence via ionic intermediates was proposed and validated.

15.
ACS Omega ; 2(8): 5315-5323, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457800

ABSTRACT

Hexa-p-tert-butylcalix[6]arene (1) is believed to adopt a winged conformation in a solution, featured by four phenyl rings perpendicular to the calix basis and two others at 1,4-positions lying down. However, there is some controversy on the occurrence of this conformation because it has never been found in the solid state of calix[6]arenes, regardless of the substitution pattern at lower and upper rims. Here, we have observed the winged-cone conformation for the first time in a solvate form of 1 with dimethyl sulfoxide (DMSO), dimethylformamide, and pyridine. The DMSO molecule is strongly encapsulated into 1 through two OH···O hydrogen bonds with both flattened phenolic moieties, one lp(S)···π and four CH···π interactions with the four perpendicular phenyl rings. This host-guest complex has energy lower by 23.4 kcal mol-1 than the isolated species. In addition, another DMSO solvate form with 1,2,3-alternate conformation was also obtained in this study, and its structure is compared with that of the precedent one. A detailed density functional theory study has also been carried out to understand the energetic relationships among cone conformers, intramolecular hydrogen-bonding patterns, and DMSO encapsulation.

16.
J Pharm Pharmacol ; 68(10): 1299-309, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27465985

ABSTRACT

OBJECTIVES: This study sought to evaluate the achievement of carvedilol (CARV) inclusion complexes with modified cyclodextrins (HPßCD and HPγCD) using fluid-bed granulation (FB). METHODS: The solid complexes were produced using FB and spray drying (SD) and were characterised by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction, SEM, flowability and particle size analyses and in vitro dissolution. KEY FINDINGS: The DSC, FTIR and powder X-ray diffraction findings suggested successful CARV inclusion in the modified ß- and γ-cyclodextrins, which was more evident in acidic media. The CARV dissolution rate was ~7-fold higher for complexes with both cyclodextrins prepared using SD than for raw CARV. Complexes prepared with HPßCD using FB also resulted in a significant improvement in dissolution rate (~5-fold) and presented superior flowability and larger particle size. CONCLUSIONS: The findings suggested that FB is the best alternative for large-scale production of solid dosage forms containing CARV. Additionally, the results suggest that HPγCD could be considered as another option for CARV complexation because of its excellent performance in inclusion complex formation in the solid state.


Subject(s)
Carbazoles/chemistry , Propanolamines/chemistry , beta-Cyclodextrins/chemistry , gamma-Cyclodextrins/chemistry , Calorimetry, Differential Scanning/methods , Carvedilol , Drug Compounding/methods , Particle Size , Solubility , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
18.
Mol Divers ; 14(4): 643-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-19902372

ABSTRACT

The crystal structure and the vibrational spectrum of a potential drug for Chagas's disease treatment, the (E)-isomer of phenylethenylbenzofuroxan 1 (5(6)(E)-[(2-phenylethenyl)]benzo[1,2-c]1,2,5-oxadiazole N-oxide), are reported. In order to provide insights into structural relationships, quantum mechanical calculations were employed starting from crystal structure. These results have given theoretical support to state interesting structural features, such as the effect of some intermolecular contacts on the molecule conformation and the electronic delocalization decreasing through atoms of the benzofuroxan moiety. Furthermore, the MOGUL comparative analysis in the Cambridge Structural Database provided additional evidences on these structural behaviors of compound 1. Intermolecular contacts interfere on the intramolecular geometry, as, for instance, on the phenyl group orientation, which is twisted by 12.32(6)° from the ethenylbenzofuroxan plane. The experimental Raman spectrum of compound 1 presents unexpected frequency shift and also anomalous Raman activities. At last, the molecule skeleton deformation and the characteristic vibrational modes were correlated by matching the experimental Raman spectrum to the calculated one.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Benzoxazoles/chemistry , Benzoxazoles/therapeutic use , Chagas Disease/drug therapy , Cyclic N-Oxides/chemistry , Oxadiazoles/chemistry , Antiprotozoal Agents/chemical synthesis , Benzoxazoles/chemical synthesis , Crystallography, X-Ray , Cyclic N-Oxides/chemical synthesis , Cyclic N-Oxides/pharmacology , Cyclic N-Oxides/therapeutic use , Humans , Models, Biological , Models, Molecular , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Phase Transition , Spectrum Analysis, Raman , Stereoisomerism , Structure-Activity Relationship , X-Ray Diffraction
19.
Phytother Res ; 24(3): 379-83, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19653314

ABSTRACT

The antiproliferative activity of two prenylated benzophenones isolated from Rheedia brasiliensis, the triprenylated garciniaphenone and the tetraprenylated benzophenone 7-epiclusianone, was investigated against human cancer cell lines. The antiproliferative activity on melanoma (UACC-62), breast (MCF-7), drug-resistant breast (NCI-ADR), lung/non-small cells (NCI460), ovarian (OVCAR 03), prostate (PC03), kidney (786-0), lung (NCI-460) and tongue (CRL-1624 and CRL-1623) cancer cells was determined using spectrophotometric quantification of the cellular protein content. The effect of these benzophenones on the activity of cathepsins B and G was also investigated. Garciniaphenone displayed cytostatic activity in all cell lines, whereas 7-epiclusianone showed a dose-dependent cytotoxic effect. The IC(50) values for cell proliferation revealed that 7-epiclusianone is more active than garciniaphenone against most of the cell lines. Furthermore, the antiproliferative effects demonstrated by garciniaphenone and 7-epiclusianone were related to their cathepsin inhibiting properties. In conclusion, 7-epiclusianone is a promising naturally occurring agent which displays multiple inhibitory effects which may be working in concert to inhibit cancer cell proliferation in vitro. The putative pathway by which 7-epiclusianone affects cancer cell development may involve cathepsin inhibition.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Benzophenones/pharmacology , Benzoquinones/pharmacology , Cathepsins/metabolism , Clusiaceae/chemistry , Plant Extracts/pharmacology , Cathepsins/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...