Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638557

ABSTRACT

Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.


Subject(s)
Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/metabolism , Adult , Computational Biology , Down-Regulation/drug effects , Female , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Male , MicroRNAs/genetics , Middle Aged , Protein Interaction Maps/drug effects , Up-Regulation/drug effects
2.
Pesqui. vet. bras ; 33(9): 1151-1154, set. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-694066

ABSTRACT

The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs). Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also cultured in specific media for adipogenic and chondrogenic differentiation. There was no expression of the CD13 marker, but CD44 and CD90 were expressed in all of the passages tested. After 14 days of cell differentiation into adipocytes, lipid droplets were observed upon Oil Red O (ORO) staining. Twenty-one days after chondrogenic differentiation, the cells were stained with Alcian Blue. Although the technique for the isolation of these cells requires improvement, the present study demonstrates the partial characterization of PbMSCs, classifying them as a promising type of progenitor cells for use in equine cell therapy.


O objetivo deste estudo foi isolar, cultivar e caracterizar as células mesenquimais multipotentes estromais derivadas do sangue periférico (SpCTMs) equino. O sangue periférico foi coletado, seguido do isolamento das células mononucleadas utilizando o reagente de gradiente de densidade e o cultivo das células aderentes. Os anticorpos monoclonais mouse anti-horse CD13, mouse anti-horse CD44 e mouse anti-rat CD90 foram utilizados para a caracterização imunofenotípica da superfície das SpCTMs. Estas células também foram cultivadas utilizando meio de cultura específico para a diferenciação adipogênica e condrogênica. Não houve expressão do marcador CD13, mas os marcadores CD44 e CD90 foram expressos em todas as passagens testadas. Após 14 dias da diferenciação das células em adipócitos, gotículas de lipídeos foram observados através da coloração com Oil Red O. Vinte e um dias após a diferenciação condrogênica, as células foram coradas com o Alcian Blue. Embora a técnica de isolamento destas células necessite ser otimizada, o presente estudo demonstra a caracterização parcial das SpCTMs, classificando-as como um tipo de células progenitoras promissoras para o uso na terapia celular em equinos.


Subject(s)
Animals , Adult , Horses/blood , Mesenchymal Stem Cells/cytology , Blood Cells/classification , Multipotent Stem Cells/physiology , Immunophenotyping/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...