Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Omics ; 19(1): 27-34, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36172788

ABSTRACT

It was demonstrated that effervescent glutamine supplementation in HIV+ individuals treated with antiretroviral therapy (ART) increased CD4+ T lymphocytes, decreased inflammation biomarkers, and brought health benefits. This pilot study aimed to explore serum metabolite variations in the HIV+ group under ART after 30 days of supplementation with glutamine, and in comparison to the matched HIV- group. The group of HIV+ showed lower levels of choline, creatine, pyruvate, glutamate, lysine, and tyrosine when compared to the HIV- group. Glucose, lipids, lactate, glutamine, phenylalanine, threonine, and phenylalanine/tyrosine were higher in HIV+ patients under long ART. Serum metabolome variations were shown to be consistent with the health improvements observed in the HIV+ group after effervescent glutamine supplementation, which might aid in ART in HIV+ individuals.


Subject(s)
Glutamine , HIV Infections , Humans , Glutamine/therapeutic use , Pilot Projects , HIV Infections/drug therapy , HIV Infections/metabolism , Tyrosine/therapeutic use , Phenylalanine/therapeutic use , Administration, Oral
2.
Pest Manag Sci ; 78(11): 4458-4470, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35775394

ABSTRACT

BACKGROUND: Entomopathogenic fungi can provide a set of ecological services, such as suppressing arthropod pests and plant pathogens. In this study, novel indigenous Beauveria caledonica (Bc) strains were isolated from naturally infected banana weevils (Cosmopolites sordidus) occurring in commercial banana plantations in Brazil. RESULTS: The prevalence of infection by Bc strains on field-caught C. sordidus ranged from 1.3% to 12.9%. Similar to the Beauveria bassiana strains tested, none of the Bc strains caused more than 50% weevil mortality at a concentration of 1 × 108 conidia ml-1 . Bc strain CMAA1810 caused the highest mortality in C. sordidus and had enhanced insecticidal activity when formulated with an emulsifiable oil. In paired co-culture assays, this same strain showed a significant growth-inhibitory effect on the causal agent of Fusarium banana wilt (Fusarium oxysporum f. sp. cubense, Foc) of twofold magnitude compared with the control. Cell-free crude filtrates derived from the red-pigmented culture broth of Bc (CMAA1810) strongly reduced Foc conidial viability, and this inhibitory activity was inversely related to the age of the Bc culture. Crude concentrated filtrates from 4-day-old cultures exhibited the strongest antifungal activity (13-fold) compared with untreated Foc conidia. The abundant compound identified in the crude filtrate of Bc was oosporein (1,4-dibenzoquinone) present at a concentration of 0.829 ± 0.018 mg g-1 dry matter, and the antifungal activity of the filtrate was demonstrated. CONCLUSION: These results indicated that Bc strains might have the potential to manage both C. sordidus and Foc, two of the major phytosanitary problems in banana crops worldwide. Further research under field conditions using suitable formulations of virulent Bc strains in combination with the metabolite oosporein is needed to evaluate their efficacy in the management of C. sordidus and Foc in banana plantations. © 2022 Society of Chemical Industry.


Subject(s)
Beauveria , Fusarium , Musa , Weevils , Animals , Antifungal Agents/pharmacology , Benzoquinones , Musa/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Spores, Fungal , Virulence
3.
J Psychiatr Res ; 119: 67-75, 2019 12.
Article in English | MEDLINE | ID: mdl-31568986

ABSTRACT

Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders that pose important challenges for diagnosis by sharing common symptoms, such as delusions and hallucinations. The underlying pathophysiology of both disorders remains largely unknown, and the identification of biomarkers with potential to support diagnosis is highly desirable. In a previous study, we successfully discriminated SCZ and BD patients from healthy control (HC) individuals by employing proton magnetic resonance spectroscopy (1H-NMR). In this study, 1H-NMR data treated by chemometrics, principal component analysis (PCA) and supervised partial least-squares discriminant analysis (PLS-DA), provided the identification of metabolites present only in BD (as for instance the 2,3-diphospho-D-glyceric acid, N-acetyl aspartyl-glutamic acid, monoethyl malonate) or only in SCZ (as isovaleryl carnitine, pantothenate, mannitol, glycine, GABA). This may represent a set of potential biomarkers to support the diagnosis of these mental disorders, enabling the discrimination between SCZ and BD, and among these psychiatric patients and HC (as 6-hydroxydopamine was present in BD and SCZ but not in HC). The presence or absence of these metabolites in blood allowed the categorization of 182 independent subjects into one of these three groups. In addition, the presented data suggest disturbances in metabolic pathways in SCZ and BD, which may provide new and important information to support the elucidation and/or new insights into the neurobiology underlying these mental disorders.


Subject(s)
Bipolar Disorder/blood , Bipolar Disorder/diagnosis , Schizophrenia/blood , Schizophrenia/diagnosis , Adolescent , Adult , Aged , Biomarkers/blood , Diagnosis, Differential , Humans , Metabolomics , Middle Aged , Principal Component Analysis , Proton Magnetic Resonance Spectroscopy , Supervised Machine Learning , Young Adult
4.
Article in English | MEDLINE | ID: mdl-30578843

ABSTRACT

The nuclear distribution element genes are conserved from fungus to humans. The nematode Caenorhabditis elegans expresses two isoforms of nuclear distribution element genes, namely nud-1 and nud-2. While nud-1 was functionally demonstrated to be the worm nudC ortholog, bioinformatic analysis revealed that the nud-2 gene encodes the worm ortholog of the mammalian NDE1 (Nuclear Distribution Element 1 or NudE) and NDEL1 (NDE-Like 1 or NudEL) genes, which share overlapping roles in brain development in mammals and also mediate the axon guidance in mammalian and C. elegans neurons. A significantly higher NDEL1 enzyme activity was shown in treatment non-resistant compared to treatment resistant SCZ patients, who essentially present response to the therapy with atypical clozapine but not with typical antipsychotics. Using C. elegans as a model, we tested the consequence of nud genes suppression in the effects of typical and atypical antipsychotics. To assess the role of nud genes and antipsychotic drugs over C. elegans behavior, we measured body bend frequency, egg laying and pharyngeal pumping, which traits are controlled by specific neurons and neurotransmitters known to be involved in SCZ, as dopamine and serotonin. Evaluation of metabolic and behavioral response to the pharmacotherapy with these antipsychotics demonstrates an important unbalance in serotonin pathway in both nud-1 and nud-2 knockout worms, with more significant effects for nud-2 knockout. The present data also show an interesting trend of mutant knockout worm strains to present a metabolic profile closer to that observed for the wild-type animals after the treatment with the typical antipsychotic haloperidol, but which was not observed for the treatment with the atypical antipsychotic clozapine. Paradoxically, behavioral assays showed more evident effects for clozapine than for haloperidol, which is in line with previous studies with rodent animal models and clinical evaluations with SCZ patients. In addition, the validity and reliability of using this experimental animal model to further explore the convergence between the dopamine/serotonin pathways and neurodevelopmental processes was demonstrated here, and the potential usefulness of this model for evaluating the metabolic consequences of treatments with antipsychotics is also suggested.


Subject(s)
Antipsychotic Agents/pharmacology , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Behavior, Animal/physiology , Caenorhabditis elegans , Clozapine/pharmacology , Disease Models, Animal , Haloperidol/pharmacology , Movement/drug effects , Movement/physiology , Neurotransmitter Agents/pharmacology , Pharynx/drug effects , Pharynx/metabolism , Proton Magnetic Resonance Spectroscopy , Reproducibility of Results , Reproduction/drug effects , Schizophrenia/drug therapy , Schizophrenia/metabolism , Serotonin/pharmacology
5.
Methods Mol Biol ; 1735: 365-379, 2018.
Article in English | MEDLINE | ID: mdl-29380328

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy in combination with chemometrics can be applied in the analysis of complex biological samples in many ways. For example, we can analyze lipids, elucidate their structures, determine their nutritional values, and determine their distribution in blood serum. As lipids are not soluble in water, they are transported in blood as lipid-rich self-assembled particles, divided into different density assemblies from high- to very-low-density lipoproteins (HDL to VLDL), or by combining with serum proteins, such as albumins (human serum albumins (HSA)). Therefore, serum lipids can be analyzed as they are using only a 1:1 (v/v) dilution with a buffer or deuterated water prior to analysis by applying 1H NMR or 1H NMR edited-by-diffusion techniques. Alternatively, lipids can be extracted from the serum using liquid partition equilibrium and then analyzed using liquid-state NMR techniques. Our chapter describes protocols that are used for extraction of blood serum lipids and their quantitative 1H NMR (1H qNMR) analysis in lipid extracts as well as 1H NMR edited by diffusion for direct blood serum lipid analysis.


Subject(s)
Lipids/blood , Magnetic Resonance Spectroscopy , Metabolomics , Biomarkers , Humans , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...