Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Microorganisms ; 11(6)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375060

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world's population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.

2.
Microorganisms, v. 11, n. 6, 1558, jun. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4955

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world’s population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.

3.
J Cell Sci ; 133(4)2020 02 20.
Article in English | MEDLINE | ID: mdl-32079731

ABSTRACT

Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.


Subject(s)
Chagas Disease , Leishmaniasis , Parasites , Plasmodium , Toxoplasma , Trypanosoma cruzi , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...