Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
2.
Int J Pharm ; 650: 123731, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38142013

ABSTRACT

The prolonged use of Personal Protective Equipment (PPE) can lead to skin problems due to persistent pressure, friction, and tension. This issue has prompted the exploration of solutions to protect the skin while maintaining the effectiveness of the PPE. This study aimed to evaluate the in vivo effectiveness of a gelatin/tannic acid-based hydrogel patch positioned beneath a mask to alleviate skin damage resulting from mask-wearing. To understand the pressure exerted by PPE, in vitro tests were conducted to measure the tensile strength of three types of facial masks. The FFP2 masks exhibited the highest tensile strength and were selected for subsequent in vivo biometric investigations. Biometric parameters were evaluated using the Flir E50bx® thermographic camera, Corneometer®, MoistureMap®, Sebumeter®, Tewameter®, and VISIA® systems. The results showed that when the hydrogel patch was used under the mask, there were no significant differences in facial skin temperature, sebum levels, or TEWL values (p > 0.05). However, a statistically significant increase in skin hydration and a decrease in frontal redness (p < 0.05) were observed. Consumer acceptance was assessed through sensory analysis questionnaires. In summary, the observed attenuation of physiological changes in the facial area and the positive consumer feedback suggest that this polymeric film-forming system is a simple yet effective solution to prevent PPE use-related skin issues.


Subject(s)
Gelatin , Hydrogels , Humans , Personal Protective Equipment , Erythema , Health Personnel , Masks
3.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38139781

ABSTRACT

Dermal and transdermal drug delivery represents an important strategy to target drugs towards the site of action or to noninvasively enhance treatment activity, circumventing the hepatic first passage and reducing toxicity [...].

4.
Vet Sci ; 10(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999481

ABSTRACT

Canine atopic dermatitis (cAD) is a common and distressing skin condition in dogs, affecting up to 30% of the canine population. It not only impacts their quality of life but also that of their owners. Like human atopic dermatitis (hAD), cAD has a complex pathogenesis, including genetic and environmental factors. Current treatments focus on managing clinical signs, but they can be costly and have limitations. This article emphasizes the importance of preventing cAD from developing in the first place. Understanding the role of the skin's protective barrier is crucial, as its dysfunction plays a vital role in both hAD and cAD. hAD prevention studies have shown promising results in enhancing the skin barrier, but more research is needed to support more robust conclusions. While hAD primary prevention is currently a focal point of intensive investigation in human medicine, research on cAD primary prevention remains under-researched and almost non-existent. Pioneering effective prevention strategies for cAD holds immense potential to enhance the quality of life for both dogs and their owners. Additionally, it bears the promise of a translational impact on human research. Hence, further exploration of this crucial topic is not only relevant but also timely and imperative, warranting support and encouragement.

5.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37759987

ABSTRACT

This work addresses the potential of the red seaweed Gelidium corneum as a source of bioactive ingredients for skin health and wellness in response to the growing awareness regarding the significance of sustainable strategies in developing new nature-based dermocosmetic products. Hydroalcoholic extracts from the dried biomass were subjected to sequential liquid-liquid partitions, affording five different fractions (F1-F5). Their cosmetic potential was assessed through a set of in vitro assays concerning their antioxidant, photoprotective, and healing properties. Additionally, their cytotoxicity in HaCaT cells and their capacity to induce inflammation in RAW 264.7 cells were also evaluated. As a proof-of-concept, O/W emulsions were prepared, and emulsion stability was assessed by optical microscopy, droplet size analysis, centrifugation tests, and rheology analysis. Furthermore, in vivo tests were conducted with the final formulation to assess its antioxidant capacity. At subtoxic concentrations, the most lipophilic fraction has provided photoprotection against UV light-induced photooxidation in HaCaT cells. This was conducted together with the aqueous fraction, which also displayed healing capacities. Regarding the physical and stability assays, the best performance was achieved with the formulation containing 1% aqueous extract, which exhibited water retention and antioxidant properties in the in vivo assay. In summary, Gelidium corneum displayed itself as a potential source of bioactive ingredients with multitarget properties for dermatological use.

6.
Adv Healthc Mater ; 12(28): e2301513, 2023 11.
Article in English | MEDLINE | ID: mdl-37515450

ABSTRACT

The optimized physical adhesion between bees' leg hairs and pollen grains-whereby the latter's diameter aligns with the spacing between the hairs-has previously inspired the development of a biomimetic drug dressing. Combining this optimized process with the improved natural mussels' adhesion in wet environments in a dual biomimetic process, it is herein proposed the fabrication of a natural-derived micropatterned hydrogel patch of methacrylated laminarin (LAM-MET), with enriched drug content and improved adhesiveness, suitable for applications like wound healing. Enhanced adhesion is accomplished by modifying LAM-MET with hydroxypyridinone groups, following the patch microfabrication by soft lithography and UV/vis-irradiation, resulting in a membrane with micropillars with a high aspect ratio. Following the biomimetics rational, a drug patch is engineered by combining the microfabricated dressing with drug particles milled to fit the spaces between pillars. Controlled drug release is achieved, together with inherent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa, and enhanced biocompatibility using the bare micropatterned patches. This new class of biomimetic dressings overcomes the challenges of current patches, like poor mechanical properties and biocompatibility, limited adhesiveness and drug dosage, and lack of prolonged antimicrobial activity, opening new insights for the development of high drug-loaded dressings with improved patient compliance.


Subject(s)
Adhesives , Biomimetics , Animals , Humans , Adhesives/pharmacology , Biomimetics/methods , Hydrogels/pharmacology , Drug Liberation , Wound Healing , Anti-Bacterial Agents/pharmacology
7.
Gels ; 9(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37232954

ABSTRACT

Rising environmental awareness drives green consumers to purchase sustainable cosmetics based on natural bioactive compounds. The aim of this study was to deliver Rosa canina L. extract as a botanical ingredient in an anti-aging gel using an eco-friendly approach. Rosehip extract was first characterized in terms of its antioxidant activity through a DPPH assay and ROS reduction test and then encapsulated in ethosomal vesicles with different percentages of ethanol. All formulations were characterized in terms of size, polydispersity, zeta potential, and entrapment efficiency. Release and skin penetration/permeation data were obtained through in vitro studies, and cell viability was assessed using an MTT assay on WS1 fibroblasts. Finally, ethosomes were incorporated in hyaluronic gels (1% or 2% w/v) to facilitate skin application, and rheological properties were studied. Rosehip extract (1 mg/mL) revealed a high antioxidant activity and was successfully encapsulated in ethosomes containing 30% ethanol, having small sizes (225.4 ± 7.0 nm), low polydispersity (0.26 ± 0.02), and good entrapment efficiency (93.41 ± 5.30%). This formulation incorporated in a hyaluronic gel 1% w/v showed an optimal pH for skin application (5.6 ± 0.2), good spreadability, and stability over 60 days at 4 °C. Considering sustainable ingredients and eco-friendly manufacturing technology, the ethosomal gel of rosehip extract could be an innovative and green anti-aging skincare product.

8.
Int J Pharm ; 638: 122941, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37044229

ABSTRACT

The recent Covid-19 pandemics led to the increased use of facial masks, which can cause skin lesions due to continuous pressure, tension and friction forces on the skin. A preventive approach is the inclusion of dressings between the face and the mask. However, there are still uncertainties about the protective effect of dressings and whether their use compromises the efficiency of masks. The current study aimed to develop and test the efficacy of a gelatin-based hydrogel patch to be placed between the mask and the facial area. Design of Experiment with a Quality by Design approach tools were used in the patch development and in vitro characterization was performed through rheological evaluation, ATR-FTIR and molecular docking studies. Furthermore, tribology studies were performed to test the patch performance. The results showed that the addition of excipients enhanced gelation temperature, elasticity and adhesiveness parameters. The interactions between excipients were confirmed by ATR-FTIR and molecular docking. The tribology assay revealed similar friction values at room and physiological temperature, and when testing different skin types. In conclusion, the physical properties and the performance evaluation reported in this study indicate that this innovative film-forming system can be used to prevent skin lesions caused by the continuous use of protective masks.


Subject(s)
COVID-19 , Skin Diseases , Humans , COVID-19/prevention & control , Masks , Gelatin , Hydrogels , Excipients , Molecular Docking Simulation
9.
Drug Deliv Transl Res ; 13(6): 1799-1812, 2023 06.
Article in English | MEDLINE | ID: mdl-36633729

ABSTRACT

Cell-free based therapies, for example, the use of the cell secretome, have emerged as a promising alternative to conventional skin therapies using bioactive and, when combined with 3D printing technologies, allow the development of personalized dosage forms. This research work aimed to develop gelatin-based patches with controlled network topology via extrusion 3D printing, loaded with cell culture medium as a model of the secretome, and applicable as vehicles for topical delivery. Inks were optimized through rheological and printing assays, and the incorporation of medium had minor effects in printability. Regarding network topology, grid infills rendered more defined structures than the triangular layout, depicting clearer pores and pore area consistency. Release studies showed that filament spacing and infill pattern influenced the release of rhodamine B (model bioactive) and bovine serum albumin (model protein). Moreover, the grid patches (G-0.7/1/0.7), despite having around a seven-fold higher mean pore area than 0.7-mm triangular ones (T-0.7), showed a similar release profile, which can be linked to the network topology of the printed structures This work provided insight on employing (bio)printing in the production of carriers with reproducible and controlled pore area, able to incorporate cell-derived secretome and to be quickly tailored to the patient's lesions.


Subject(s)
Gelatin , Skin , Humans , Porosity
10.
Int J Pharm ; 632: 122541, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36566824

ABSTRACT

Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.


Subject(s)
Honey , Staphylococcus aureus , Humans , Gelatin , Microbial Sensitivity Tests , Escherichia coli , Wound Healing , Honey/analysis , Anti-Bacterial Agents/chemistry , Printing, Three-Dimensional , Hydrogels
12.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890204

ABSTRACT

The authors would like to make the following corrections about the published paper [...].

13.
Int J Mol Sci ; 23(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35806112

ABSTRACT

Nanoparticulate systems have been widely investigated as delivery vectors for efficient drug delivery in different diseases. Nanostructured lipid carriers (NLC) are composed of both solid and liquid lipids (glyceryl dibehenate and diethylene glycol monoethyl ether) and have demonstrated enhanced biological compatibility and increased drug loading capability. Furthermore, the use of peptides, in particular cell-penetrating peptides, to functionalize nanoparticles and enhance cell membrane permeation was explored in this paper. In this paper, we described the synthesis of a new conjugated of tranylcypromine with MAP. In addition, taking into consideration our previous results, this study developed different NLCs loaded with three central nervous system (CNS) drugs (tacrine (TAC), rasagiline (RAS), and tranylcypromine (TCP)) functionalized with model amphipathic peptide (MAP) and evaluated their activity against cancer cells. Particle size analysis demonstrated NLC presented less than 200 nm and a polydispersity index less than 0.3. Moreover, in vitro results showed that conjugation of MAP with drugs led to a higher decrease in cell viability of a neuroblastoma cell line and Caco-2 cell line, more than MAP alone. Furthermore, NLC encapsulation contributed to higher cellular delivery and enhanced toxic activity at lower concentrations when compared with free or co-administration drug-MAP conjugate.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Nanostructures , Caco-2 Cells , Cell-Penetrating Peptides/pharmacology , Central Nervous System Diseases/drug therapy , Drug Carriers/metabolism , Humans , Lipids , Particle Size , Tranylcypromine
14.
Molecules ; 27(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35684509

ABSTRACT

Essential oils (EOs) and hydrolates (Hds) are natural sources of biologically active ingredients with broad applications in the cosmetic industry. In this study, nationally produced (mainland Portugal and Azores archipelago) EOs (11) and Hds (7) obtained from forest logging and thinning of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica, were chemically evaluated, and their bioactivity and sensorial properties were assessed. EOs and Hd volatiles (HdVs) were analyzed by GC-FID and GC-MS. 1,8-Cineole was dominant in E. globulus EOs and HdVs, and α- and ß-pinene in P. pinaster EOs. Limonene and α-pinene led in P. pinea and C. japonica EOs, respectively. P. pinaster and C. japonica HVs were dominated by α-terpineol and terpinen-4-ol, respectively. The antioxidant activity was determined by DPPH, ORAC and ROS. C. japonica EO showed the highest antioxidant activity, whereas one of the E. globulus EOs showed the lowest. Antimicrobial activity results revealed different levels of efficacy for Eucalyptus and Pinus EOs while C. japonica EO showed no antimicrobial activity against the selected strains. The perception and applicability of emulsions with 0.5% of EOs were evaluated through an in vivo sensory study. C. japonica emulsion, which has a fresh and earthy odour, was chosen as the most pleasant fragrance (60%), followed by P. pinea emulsion (53%). In summary, some of the studied EOs and Hds showed antioxidant and antimicrobial activities and they are possible candidates to address the consumers demand for more sustainable and responsibly sourced ingredients.


Subject(s)
Anti-Infective Agents , Eucalyptus , Oils, Volatile , Pinus , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Emulsions , Eucalyptus/chemistry , Forests , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pinus/chemistry , Portugal
15.
Molecules ; 27(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35566093

ABSTRACT

Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Drug Carriers , Liposomes , Neuropeptide Y
16.
J Dermatol ; 49(9): 805-817, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35567311

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enforced the use of hand sanitation and of personal protective equipment, such as masks and visors, especially by health-care professionals, but also by the general public. However, frequent hand sanitation and the prolonged and continuous use of personal protective equipment are responsible for constant frictional and pressure forces on skin causing lesions, the most reported being acne, facial itching, dryness, and rash. Thus, it is important to find measures to prevent skin lesions, in order to improve the quality of life of health-care professionals and of the general public. This article gathers the current information regarding measures to prevent human to human transmission of COVID-19, reviews the most common skin lesions caused by the use of hand sanitizers and different types of personal protective equipment, and the possible preventive measures that can be used on a daily basis to minimize the risk of developing skin-related pathologies. Daily skin care routines and the incorporation of a dressing between the skin and the personal protective equipment to serve as a protective barrier are some of the applied measures. Moisturizers and dressings improve the skin's ability to respond to constant aggressions. Lastly, the need for additional studies to evaluate the lubrication properties of different types of dressings is discussed. The understanding of what kind of dressing is more suitable to prevent pressure injuries is crucial to promote healthy skin and wellbeing during pandemic times.


Subject(s)
COVID-19 , Skin Diseases , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Personal Protective Equipment/adverse effects , Quality of Life , SARS-CoV-2 , Sanitation , Skin Diseases/etiology
17.
AAPS PharmSciTech ; 23(4): 107, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35381882

ABSTRACT

Palatability and swallowability in the pediatric population are perceived as true challenges in the oral administration of medication. Pediatric patients have high sensitivity to taste and reduced ability to take solid dosage forms, which can often lead to a poor therapeutic compliance. It is crucial to find new strategies to simplify the oral administration of drugs to children. The present paper reports the development of a new hydrogel vehicle adapted to the pediatric population. Several polymers with similar properties were selected and adjustments were made to obtain the desired characteristics of the final product. The developed formulations were studied for organoleptic properties, rheology, mucoadhesion properties, preservative efficacy, and stability. Physical and chemical compatibilities between the vehicle and several drugs/medicines, at the time of administration, were also studied. Six final formulations with different polymers, odor, and color were chosen, and no known interactions with medications were observed. The proposed new oral vehicles are the first sugar-free vehicle hydrogels designed to make the intake of oral solid forms a more pleasant and safer experience for pediatric patients.


Subject(s)
Hydrogels , Pediatrics , Administration, Oral , Child , Excipients , Humans , Patient Compliance
18.
J Agric Food Chem ; 70(14): 4221-4242, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35357173

ABSTRACT

Over the years, the growth of the world population has caused a huge agricultural production to support the population's needs. Since plant protection products are essential to preserve agricultural crops and to optimize vital plant processes, it is crucial to use more sustainable, biodegradable, and biocompatible raw materials, without harming the environment and human health. Although the development of new plant protection products is a costly process, the environmental benefits should be considered. In this context, marine raw materials obtained as byproducts of fishing industries, possessing a wide variety of physicochemical and biological properties, can serve as a promising source of such materials. They have a high potential for developing alternative and safe formulations for agricultural applications, not only as biocompatible excipients but also as effective and selective, or even both. It is also possible to promote a synergistic effect between an active substance and the biological activity of the marine polymer used in the formulation, enabling plant protection products with lower concentrations of the active substances. Thus, this review addresses the repurposing of marine raw materials for the development of innovative plant protection products, focusing on micro- and nanoparticulate formulations, to protect the environment through more ecological and sustainable strategies.


Subject(s)
Agriculture , Crops, Agricultural , Biocompatible Materials , Humans , Polymers
19.
ALTEX ; 39(3): 405­418, 2022.
Article in English | MEDLINE | ID: mdl-35319071

ABSTRACT

There is a global trend towards the development of physiologically relevant in vitro skin models to reduce or replace animal testing in the evaluation of therapeutic drug candidates. However, only commercial reconstructed human epidermis models (RHEm) have undergone formal validation. Although these commercial models are suitable for a wide range of applications, they are costly, lack flexibility, and the protocols used to generate them are not transparent. In this study, we present an open-source full-thickness skin model (FTSm) and assess its potential for drug testing. The FTSm was developed using endogenous extracellular matrix to recreate the dermal compartment, avoiding animal-derived hydrogels. An RHEm based on an open-source protocol was evaluated in parallel. The integrity of the skin barrier was analyzed by challenging the surface with detergents and measuring cell viability as well as by trans-epithelial electrical resistance (TEER) measurements. Skin irritation studies were performed based on OECD guidelines and complemented with an evaluation of the impact on the skin barrier by TEER measurement. The permeation of a dye through the developed models and a commercial membrane (Strat-M®) was compared using Franz diffusion cells and an infinite dose approach. The FTSm demonstrated structural and barrier properties comparable to native human skin. Although the RHEm showed a better performance in drug testing, the FTSm presented better barrier properties than commercial models as reported in the literature. These skin models can be a valuable contribution to accelerating the development and dissemination of alternatives to animal testing, avoiding the limitations of commercial models.


Subject(s)
Irritants , Skin Irritancy Tests , Animal Testing Alternatives/methods , Animals , Epidermis , Humans , Skin , Skin Irritancy Tests/methods
20.
Acta Biomater ; 142: 14-35, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35202853

ABSTRACT

Hair care and treatment has evolved significantly through the years as new formulations are continuously being explored in an attempt to meet the demand in cosmetic and medicinal fields. While standard hair care procedures include hair washing, aimed at hair cleansing and maintenance, as well as hair dyeing and bleaching formulations for hair embellishment, modern hair treatments are mainly focused on circumventing hair loss conditions, strengthening hair follicle properties and treat hair infestations. In this regard, active compounds (ACs) included in hair cosmetic formulations include a vast array of hair cleansing and hair dye molecules, and typical hair treatments include anti-hair loss ACs (e.g. minoxidil and finasteride) and anti-lice ACs (e.g. permethrin). However, several challenges still persist, as conventional AC formulations exhibit sub-optimal performance and some may present toxicity issues, calling for an improved design of formulations regarding both efficacy and safety. More recently, nano-based strategies encompassing nanomaterials have emerged as promising tailored approaches to improve the performance of ACs incorporated into hair cosmetics and treatment formulations. The interest in using these nanomaterials is based on account of their ability to: (1) increase stability, safety and biocompatibility of ACs; (2) maximize hair affinity, contact and retention, acting as versatile biointerfaces; (3) enable the controlled release of ACs in both hair and scalp, serving as prolonged AC reservoirs; besides offering (4) hair follicle targeting features attending to the possibility of surface tunability. This review covers the breakthrough of nanomaterials for hair cosmetics and hair treatment, focusing on organic nanomaterials (polymer-based and lipid-based nanoparticles) and inorganic nanomaterials (nanosheets, nanotubes and inorganic nanoparticles), as well as their applications, highlighting their potential as innovative multifunctional nanomaterials towards maximized hair care and treatment. STATEMENT OF SIGNIFICANCE: This manuscript is focused on reviewing the nanotechnological strategies investigated for hair care and treatment so far. While conventional formulations exhibit sub-optimal performance and some may present toxicity issues, the selection of improved and suitable nanodelivery systems is of utmost relevance to ensure a proper active ingredient release in both hair and scalp, maximize hair affinity, contact and retention, and provide hair follicle targeting features, warranting stability, efficacy and safety. This innovative manuscript highlights the advantages of nanotechnology-based approaches, particularly as tunable and versatile biointerfaces, and their applications as innovative multifunctional nanomaterials towards maximized hair care and treatment.


Subject(s)
Cosmetics , Hair Preparations , Nanostructures , Hair , Hair Preparations/pharmacology , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...