Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 106(3): 036101, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405282

ABSTRACT

The evolution of the atomic structure of LaAlO_{3} grown on SrTiO_{3} was investigated using surface x-ray diffraction in conjunction with model-independent, phase-retrieval algorithms between two and five monolayers film thickness. A depolarizing buckling is observed between cation and oxygen positions in response to the electric field of polar LaAlO_{3}, which decreases with increasing film thickness. We explain this in terms of competition between elastic strain energy, electrostatic energy, and electronic reconstructions. Based on these structures, the threshold for formation of a two-dimensional electron system at a film thickness of 4 monolayers is quantitatively explained. The findings are also qualitatively reproduced by density-functional-theory calculations.


Subject(s)
Aluminum/chemistry , Lanthanum/chemistry , Oxides/chemistry , Strontium/chemistry , Titanium/chemistry , X-Ray Diffraction
2.
Phys Rev Lett ; 101(12): 126102, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18851393

ABSTRACT

The structure of a single layer of graphene on Ru(0001) has been studied using surface x-ray diffraction. A surprising superstructure containing 1250 carbon atoms has been determined, whereby 25 x 25 graphene unit cells lie on 23 x 23 unit cells of Ru. Each supercell contains 2 x 2 crystallographically inequivalent subcells caused by corrugation. Strong intensity oscillations in the superstructure rods demonstrate that the Ru substrate is also significantly corrugated down to several monolayers and that the bonding between graphene and Ru is strong and cannot be caused by van der Waals bonds. Charge transfer from the Ru substrate to the graphene expands and weakens the C-C bonds, which helps accommodate the in-plane tensile stress. The elucidation of this superstructure provides important information in the potential application of graphene as a template for nanocluster arrays.

3.
Phys Rev Lett ; 99(15): 155502, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17995179

ABSTRACT

The complete atomic structure of a five-monolayer film of LaAlO3 on SrTiO3 has been determined for the first time by surface x-ray diffraction in conjunction with the coherent Bragg rod analysis phase-retrieval method and further structural refinement. Cationic mixing at the interface results in dilatory distortions and the formation of metallic La(1-x)SrxTiO3. By invoking electrostatic potential minimization, the ratio of Ti{4+}/Ti{3+} across the interface was determined, from which the lattice dilation could be quantitatively explained using ionic radii considerations. The correctness of this model is supported by density functional theory calculations. Thus, the formation of a quasi-two-dimensional electron gas in this system is explained, based on structural considerations.

4.
Phys Rev Lett ; 96(17): 176102, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16712314

ABSTRACT

A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of on , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of DeltaT approximately 500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...