Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Clin Neuroradiol ; 34(1): 147-154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37676281

ABSTRACT

PURPOSE: In-stent restenosis (ISR) following internal carotid artery (ICA) stenting is relatively common with an estimated incidence of 5%. Treatment options include repeat angioplasty with conventional or drug-eluting balloons (DEB), repeat stent angioplasty and surgical intervention. Application of DEB in ISR of the coronary and peripheral arteries is an established method; however, data on DEB treatment of ICA ISR are sparse. In this work, results from a retrospective cohort of 45 patients harboring 46 ICA ISR lesions treated with DEB angioplasty are presented. METHODS: Clinical, procedural and imaging data from DEB angioplasty treatment of 46 high-grade ICA ISR lesions in 45 patients, performed between 2013 and 2021 were collected. A single type of DEB (Elutax, Aachen Resonance, Aachen, Germany) was used in all procedures. Imaging follow-up was performed by regular Doppler ultrasound (DUS), verified by computed tomography angiography (CTA) in cases suspicious for a recurrent ISR. RESULTS: Technical success was 100%. Intraprocedural and postprocedural complications were not encountered. Clinical follow-up was obtained in all patients. Recurrent stroke in the affected territory was not encountered. A recurrent ISR following DEB treatment was confirmed by DUS and CTA in 4/46 (8.7%) of the lesions and were retreated with DEB. A third recurrent ISR occurred in a single case (2%) and following a second DEB retreatment there were no signs of a fourth recurrence after 36 months follow-up. CONCLUSION: The use of DEB angioplasty is a safe and effective treatment of ICA ISR lesions, yielding significantly better results compared to other modalities. Randomized multicenter studies are warranted.


Subject(s)
Coronary Restenosis , Drug-Eluting Stents , Humans , Carotid Artery, Internal/diagnostic imaging , Retrospective Studies , Coronary Restenosis/etiology , Coronary Restenosis/therapy , Drug-Eluting Stents/adverse effects , Stents/adverse effects , Constriction, Pathologic , Treatment Outcome
2.
FEBS Open Bio ; 14(3): 380-389, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129177

ABSTRACT

The receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 virus mediates the interaction with the host cell and is required for virus internalization. It is, therefore, the primary target of neutralizing antibodies. The receptor-binding domain soon became the major target for COVID-19 research and the development of diagnostic tools and new-generation vaccines. Here, we provide a detailed protocol for high-yield expression and one-step affinity purification of recombinant RBD from transiently transfected Expi293F cells. Expi293F mammalian cells can be grown to extremely high densities in a specially formulated serum-free medium in suspension cultures, which makes them an excellent tool for secreted protein production. The highly purified RBD is glycosylated, structurally intact, and forms homomeric complexes. With this quick and easy method, we are able to produce large quantities of RBD (80 mg·L-1 culture) that we have successfully used in immunological assays to examine antibody titers and seroconversion after mRNA-based vaccination of mice.


Subject(s)
COVID-19 , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/metabolism , Antibodies, Viral , Mammals
3.
Research (Wash D C) ; 6: 0056, 2023.
Article in English | MEDLINE | ID: mdl-36930811

ABSTRACT

Efficient in vivo delivery of anti-inflammatory proteins to modulate the microenvironment of an injured spinal cord and promote neuroprotection and functional recovery is a great challenge. Nucleoside-modified messenger RNA (mRNA) has become a promising new modality that can be utilized for the safe and efficient delivery of therapeutic proteins. Here, we used lipid nanoparticle (LNP)-encapsulated human interleukin-10 (hIL-10)-encoding nucleoside-modified mRNA to induce neuroprotection and functional recovery following rat spinal cord contusion injury. Intralesional administration of hIL-10 mRNA-LNP to rats led to a remarkable reduction of the microglia/macrophage reaction in the injured spinal segment and induced significant functional recovery compared to controls. Furthermore, hIL-10 mRNA treatment induced increased expression in tissue inhibitor of matrix metalloproteinase 1 and ciliary neurotrophic factor levels in the affected spinal segment indicating a time-delayed secondary effect of IL-10 5 d after injection. Our results suggest that treatment with nucleoside-modified mRNAs encoding neuroprotective factors is an effective strategy for spinal cord injury repair.

4.
Cells ; 12(3)2023 01 28.
Article in English | MEDLINE | ID: mdl-36766770

ABSTRACT

Lipid metabolic disturbances are associated with several diseases, such as type 2 diabetes or malignancy. In the last two decades, high-performance mass spectrometry-based lipidomics has emerged as a valuable tool in various fields of biology. However, the evaluation of macroscopic tissue homogenates leaves often undiscovered the differences arising from micron-scale heterogeneity. Therefore, in this work, we developed a novel laser microdissection-coupled shotgun lipidomic platform, which combines quantitative and broad-range lipidome analysis with reasonable spatial resolution. The multistep approach involves the preparation of successive cryosections from tissue samples, cross-referencing of native and stained images, laser microdissection of regions of interest, in situ lipid extraction, and quantitative shotgun lipidomics. We used mouse liver and kidney as well as a 2D cell culture model to validate the novel workflow in terms of extraction efficiency, reproducibility, and linearity of quantification. We established that the limit of dissectible sample area corresponds to about ten cells while maintaining good lipidome coverage. We demonstrate the performance of the method in recognizing tissue heterogeneity on the example of a mouse hippocampus. By providing topological mapping of lipid metabolism, the novel platform might help to uncover region-specific lipidomic alterations in complex samples, including tumors.


Subject(s)
Diabetes Mellitus, Type 2 , Lipidomics , Animals , Mice , Lipids/analysis , Microdissection , Reproducibility of Results , Lasers
5.
Pharmaceutics ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34959318

ABSTRACT

BGP-15 is a Hungarian-developed drug candidate with numerous beneficial effects. Its potential anti-inflammatory effect is a common assumption, but it has not been investigated in topical formulations yet. The aim of our study was to formulate 10% BGP-15 creams with different penetration enhancers to ensure good drug delivery, improve bioavailability of the drug and investigate the potential anti-inflammatory effect of BGP-15 creams in vivo. Since the exact mechanism of the effect is still unknown, the antioxidant effect (tested with UVB radiation) and the ability of BGP-15 to decrease macrophage activation were evaluated. Biocompatibility investigations were carried out on HaCaT cells to make sure that the formulations and the selected excipients can be safely used. Dosage form studies were also completed with texture analysis and in vitro release with Franz diffusion chamber apparatus. Our results show that the ointments were able to reduce the extent of local inflammation in mice, but the exact mechanism of the effect remains unknown since BGP-15 did not show any antioxidant effect, nor was it able to decrease LPS-induced macrophage activation. Our results support the hypothesis that BGP-15 has a potential anti-inflammatory effect, even if it is topically applied, but the mechanism of the effect remains unclear and requires further pharmacological studies.

6.
FEBS J ; 288(16): 4812-4832, 2021 08.
Article in English | MEDLINE | ID: mdl-33606336

ABSTRACT

Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.


Subject(s)
Membrane Proteins/metabolism , Actins/genetics , Actins/metabolism , Animals , Cell Nucleus/metabolism , Drosophila , Gene Expression Regulation/genetics , Membrane Proteins/genetics
8.
Breast Cancer Res ; 22(1): 75, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32660617

ABSTRACT

BACKGROUND: PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. METHODS: The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. RESULTS: Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. CONCLUSION: PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.


Subject(s)
Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Receptors, Progesterone/metabolism , Animals , Apoptosis/physiology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis , Cell Proliferation/physiology , Disease Progression , Female , Heterografts , Homeostasis , Humans , Lipid Metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/genetics , Tumor Cells, Cultured
9.
Cells ; 9(4)2020 04 12.
Article in English | MEDLINE | ID: mdl-32290618

ABSTRACT

The heat shock response (HSR) regulates induction of stress/heat shock proteins (HSPs) to preserve proteostasis during cellular stress. Earlier, our group established that the plasma membrane (PM) acts as a sensor and regulator of HSR through changes in its microdomain organization. PM microdomains such as lipid rafts, dynamic nanoscale assemblies enriched in cholesterol and sphingomyelin, and caveolae, cholesterol-rich PM invaginations, constitute clustering platforms for proteins functional in signaling cascades. Here, we aimed to compare the effect of cyclodextrin (MßCD)- and nystatin-induced cholesterol modulations on stress-activated expression of the representative HSPs, HSP70, and HSP25 in mouse B16-F10 melanoma cells. Depletion of cholesterol levels with MßCD impaired the heat-inducibility of both HSP70 and HSP25. Sequestration of cholesterol with nystatin impaired the heat-inducibility of HSP25 but not of HSP70. Imaging fluorescent correlation spectroscopy marked a modulated lateral diffusion constant of fluorescently labelled cholesterol in PM during cholesterol deprived conditions. Lipidomics analysis upon MßCD treatment revealed, next to cholesterol reductions, decreased lysophosphatidylcholine and phosphatidic acid levels. These data not only highlight the involvement of PM integrity in HSR but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism to fine tune HSP expression.


Subject(s)
Cell Membrane/metabolism , HSP70 Heat-Shock Proteins/metabolism , Melanoma/genetics , Membrane Microdomains/metabolism , Animals , Melanoma/pathology , Mice , Signal Transduction
10.
J Nanobiotechnology ; 18(1): 18, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31964403

ABSTRACT

BACKGROUND: Although accumulating evidence suggests that the crosstalk between malignant cells and cancer-associated fibroblasts (CAFs) actively contributes to tumour growth and metastatic dissemination, therapeutic strategies targeting tumour stroma are still not common in the clinical practice. Metal-based nanomaterials have been shown to exert excellent cytotoxic and anti-cancerous activities, however, their effects on the reactive stroma have never been investigated in details. Thus, using feasible in vitro and in vivo systems to model tumour microenvironment, we tested whether the presence of gold, silver or gold-core silver-shell nanoparticles exerts anti-tumour and metastasis suppressing activities by influencing the tumour-supporting activity of stromal fibroblasts. RESULTS: We found that the presence of gold-core silver-shell hybrid nanomaterials in the tumour microenvironment attenuated the tumour cell-promoting behaviour of CAFs, and this phenomenon led to a prominent attenuation of metastatic dissemination in vivo as well. Mechanistically, transcriptome analysis on tumour-promoting CAFs revealed that silver-based nanomaterials trigger expressional changes in genes related to cancer invasion and tumour metastasis. CONCLUSIONS: Here we report that metal nanoparticles can influence the cancer-promoting activity of tumour stroma by affecting the gene expressional and secretory profiles of stromal fibroblasts and thereby altering their intrinsic crosstalk with malignant cells. This potential of metal nanomaterials should be exploited in multimodal treatment approaches and translated into improved therapeutic outcomes.


Subject(s)
Antineoplastic Agents/chemistry , Cancer-Associated Fibroblasts/drug effects , Metal Nanoparticles/chemistry , Neoplasm Metastasis/drug therapy , Alloys/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Movement , Cell Survival , Disease Progression , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Female , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation, Neoplastic , Gold/chemistry , Humans , Metal Nanoparticles/therapeutic use , Mice, Inbred BALB C , Neoplasm Metastasis/pathology , Neoplasm Transplantation , Silver/chemistry , Tumor Microenvironment/drug effects
11.
BMC Cancer ; 18(1): 872, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30185144

ABSTRACT

BACKGROUND: Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing. METHODS: ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells. RESULTS: After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro. CONCLUSIONS: Our model indicates how ASCs with altered genetic background may support tumor progression.


Subject(s)
Adipose Tissue/cytology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Insulin-Like Growth Factor I/biosynthesis , Polyploidy , Stem Cells/cytology , Stem Cells/metabolism , Animals , Antigens, Surface/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Flow Cytometry , Gene Expression Profiling , Humans , Karyotype , Kruppel-Like Factor 4 , Mice , Transcriptome
12.
Front Microbiol ; 8: 1197, 2017.
Article in English | MEDLINE | ID: mdl-28713338

ABSTRACT

Candida parapsilosis is an opportunistic human fungal pathogen that poses a serious threat to low birth weight neonates, particularly at intensive care units. In premature infants, the distinct immune responses to Candida infections are not well understood. Although several in vivo models exist to study systemic candidiasis, only a few are available to investigate dissemination in newborns. In addition, the majority of related studies apply intraperitoneal infection rather than intravenous inoculation of murine infants that may be less efficient when studying systemic invasion. In this study, we describe a novel and conveniently applicable intravenous neonatal mouse model to monitor systemic C. parapsilosis infection. Using the currently developed model, we aimed to analyze the pathogenic properties of different C. parapsilosis strains. We infected 2 days-old BALB/c mouse pups via the external facial vein with different doses of C. parapsilosis strains. Homogenous dissemination of yeast cells was found in the spleen, kidney, liver and brain of infected newborn mice. Colonization of harvested organs was also confirmed by histological examinations. Fungal burdens in newborn mice showed a difference for two isolates of C. parapsilosis. C. parapsilosis CLIB infection resulted in higher colonization of the spleen, kidney and liver of neonatal mice compared to the C. parapsilosis GA1 strain at day 2 after the infection. In a comprehensive study with the adult mice infection, we also presented the attenuated virulence of a C. parapsilosis cell wall mutant (OCH1) in this model. Significantly less och1Δ/Δ null mutant cells were recovered from the spleen, kidney and liver of newborn mice compared to the wild type strain. When investigating the cytokine response of neonatal mice to C. parapsilosis infection, we found elevated TNFα, KC, and IL-1ß expression levels in all organs examined when compared to the uninfected control. Furthermore, all three measured cytokines showed a significantly elevated expression when newborn mice were infected with och1Δ/Δ cells compared to the wild type strain. This result further supported the inclusion of OCH1 in C. parapsilosis pathogenicity. To our current knowledge, this is the first study that uses a mice neonatal intravenous infection model to investigate C. parapsilosis infection.

13.
PLoS One ; 12(6): e0179950, 2017.
Article in English | MEDLINE | ID: mdl-28640864

ABSTRACT

There is convincing epidemiological and experimental evidence that capsaicin, a potent natural transient receptor potential cation channel vanilloid member 1 (TRPV1) agonist, has anticancer activity. However, capsaicin cannot be given systemically in large doses, because of its induction of acute pain and neurological inflammation. MRS1477, a dihydropyridine derivative acts as a positive allosteric modulator of TRPV1, if added together with capsaicin, but is ineffective, if given alone. Addition of MRS1477 evoked Ca2+ signals in MCF7 breast cancer cells, but not in primary breast epithelial cells. This indicates that MCF7 cells not only express functional TRPV1 channels, but also produce endogenous TRPV1 agonists. We investigated the effects of MRS1477 and capsaicin on cell viability, caspase-3 and -9 activities and reactive oxygen species production in MCF7 cells. The fraction of apoptotic cells was increased after 3 days incubation with capsaicin (10 µM) paralleled by increased reactive oxygen species production and caspase activity. These effects were even more pronounced, when cells were incubated with MRS1477 (2 µM) either alone or together with CAPS (10 µM). Capsazepine, a TRPV1 blocker, inhibited both the effect of capsaicin and MRS1477. Whole-cell patch clamp recordings revealed that capsaicin-evoked TRPV1-mediated current density levels were increased after 3 days incubation with MRS1477 (2 µM). However, the tumor growth in MCF7 tumor-bearing immunodeficient mice was not significantly decreased after treatment with MRS1477 (10 mg/ kg body weight, i.p., injection twice a week). In conclusion, in view of a putative in vivo treatment with MRS1477 or similar compounds further optimization is required.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Dihydropyridines/pharmacology , Molecular Targeted Therapy , TRPV Cation Channels/metabolism , Allosteric Regulation/drug effects , Animals , Apoptosis/drug effects , Calcium Signaling/drug effects , Capsaicin/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mice , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
14.
Arch Pharm (Weinheim) ; 350(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28547897

ABSTRACT

A series of novel curcuminoids were synthesised for the first time via a Mannich-3CR/organocatalysed Claisen-Schmidt condensation sequence. Structure-activity relationship (SAR) studies were performed by applying viability assays and holographic microscopic imaging to these curcumin analogues for anti-proliferative activity against A549 and H1975 lung adenocarcinoma cells. The TNFα-induced NF-κB inhibition and autophagy induction effects correlated strongly with the cytotoxic potential of the analogues. Significant inhibition of tumour growth was observed when the most potent analogue 44 was added in liposomes at one-sixth of the maximally tolerated dose in the A549 xenograft model. The novel spectrum of activity of these Mannich curcuminoids warrants further preclinical investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Curcumin/pharmacology , Mannich Bases/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/analogs & derivatives , Curcumin/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mannich Bases/chemistry , Mice , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Structure-Activity Relationship
15.
Anticancer Res ; 36(11): 5743-5750, 2016 11.
Article in English | MEDLINE | ID: mdl-27793895

ABSTRACT

BACKGROUND/AIM: Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. MATERIALS AND METHODS: The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. RESULTS: The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. CONCLUSION: o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs.


Subject(s)
Benzaldehydes/pharmacology , Melanoma/pathology , NF-kappa B/antagonists & inhibitors , Animals , Cell Line, Tumor , Humans , Mice , NF-kappa B/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
16.
Front Microbiol ; 7: 306, 2016.
Article in English | MEDLINE | ID: mdl-27014229

ABSTRACT

Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by ß-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1ß stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.

17.
PLoS One ; 11(3): e0149832, 2016.
Article in English | MEDLINE | ID: mdl-26943907

ABSTRACT

C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.


Subject(s)
Acrylamides/chemistry , Brain Neoplasms/drug therapy , Curcumin/analogs & derivatives , Curcumin/chemistry , Glioblastoma/drug therapy , NF-kappa B/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Notch/antagonists & inhibitors , Unfolded Protein Response/drug effects , Animals , Antineoplastic Agents/chemistry , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Drosophila melanogaster , Drug Screening Assays, Antitumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Humans , Inhibitory Concentration 50 , Melanoma, Experimental , Mice , Neoplasm Transplantation , Rats , Rats, Nude , Receptors, Notch/metabolism , Signal Transduction , Transcription, Genetic
19.
Biomed Res Int ; 2015: 398045, 2015.
Article in English | MEDLINE | ID: mdl-26366412

ABSTRACT

To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis.


Subject(s)
Acetylglucosamine/metabolism , Candida albicans/metabolism , Candida albicans/pathogenicity , Epithelial Cells/microbiology , Vagina/microbiology , Virulence/physiology , Candidiasis, Vulvovaginal/microbiology , Cell Line , Epithelium/microbiology , Female , Humans , Hyphae/metabolism , Hyphae/pathogenicity
20.
Ideggyogy Sz ; 68(7-8): 279-85, 2015 Jul 30.
Article in Hungarian | MEDLINE | ID: mdl-26380423

ABSTRACT

In the recent years, it has been increasingly recognised that in a group of limbic encephalitis antibodies are directed against the scaffolding protein LGI1 (Leucine-rich glioma inactivated 1), which is part of the voltage gated potassium channel (VGKC) complex on neural synapses. Patients present with seizures and subacute history of neuropsychiatric symptoms, including psychosis and changes in memory, cognition, behaviour. Faciobrachial dystonic seizures can be observed, which are highly characteristic for LGI1 encephalitis. MRI shows medial temporal abnormalities in more than half of the cases. CSF evaluation is usually normal. Hyponatremia is frequently associated and may confuse the initial diagnosis. Early recognition and prompt initiation of immunotherapies are of great importance. The clinical improvements often correlate with the antibody levels. We present the case of a 64-year old man, who responded quickly to plasma exchange and major improvement was noted within few weeks.


Subject(s)
Autoantibodies/blood , Limbic Encephalitis/diagnosis , Limbic Encephalitis/therapy , Plasma Exchange , Proteins/immunology , Cognition , Diagnosis, Differential , Early Diagnosis , Humans , Hungary , Intracellular Signaling Peptides and Proteins , Limbic Encephalitis/complications , Limbic Encephalitis/metabolism , Limbic Encephalitis/psychology , Magnetic Resonance Imaging , Male , Memory , Middle Aged , Potassium Channels, Voltage-Gated/metabolism , Proteins/metabolism , Social Behavior , Temporal Lobe/metabolism , Temporal Lobe/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...