Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 812: 152474, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34952068

ABSTRACT

Long-chain unsaturated alkenones produced by haptophyte algae are widely used as paleotemperature indicators. The unsaturation relationship to temperature is linear at mid-latitudes, however, non-linear responses detected in subpolar regions of both hemispheres have suggested complicating factors in these environments. To assess the influence of biotic and abiotic factors in alkenone production and preservation in the Subantarctic Zone, alkenone fluxes were quantified in three vertically-moored sediment traps deployed at the SOTS observatory (140°E, 47°S) during a year. Alkenone fluxes were compared with coccolithophore assemblages, satellite measurements and surface-water properties obtained by sensors at SOTS. Alkenone-based temperature reconstructions generally mirrored the seasonal variations of SSTs, except for late winter when significant deviations were observed (3-10 °C). Annual flux-weighted averages in the 3800 m trap returned alkenone-derived temperatures ~1.5 °C warmer than those derived from the 1000 m trap, a distortion attributed to surface production and signal preservation during its transit through the water column. Notably, changes in the relative abundance of E. huxleyi var. huxleyi were positively correlated with temperature deviations between the alkenone-derived temperatures and in situ SSTs (r = 0.6 and 0.7 at 1000 and 2000 m, respectively), while E. huxleyi var. aurorae, displayed an opposite trend. Our results suggest that E. huxleyi var. aurorae produces a higher proportion of C37:3 relative to C37:2 compared to its counterparts. Therefore, the dominance of var. aurorae south of the Subtropical Front could be at least partially responsible for the less accurate alkenone-based SST reconstructions in the Southern Ocean using global calibrations. However, the observed correlations were largely influenced by the samples collected during winter, a period characterized by low particle fluxes and slow sinking rates. Thus, it is likely that other factors such as selective degradation of the most unsaturated alkenones could also account for the deviations of the alkenone paleothermometer.


Subject(s)
Haptophyta , Ecotype , Oceans and Seas , Temperature
2.
Nat Commun ; 9(1): 4235, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315157

ABSTRACT

Considerable ambiguity remains over the extent and nature of millennial/centennial-scale climate instability during the Last Interglacial (LIG). Here we analyse marine and terrestrial proxies from a deep-sea sediment sequence on the Portuguese Margin and combine results with an intensively dated Italian speleothem record and climate-model experiments. The strongest expression of climate variability occurred during the transitions into and out of the LIG. Our records also document a series of multi-centennial intra-interglacial arid events in southern Europe, coherent with cold water-mass expansions in the North Atlantic. The spatial and temporal fingerprints of these changes indicate a reorganization of ocean surface circulation, consistent with low-intensity disruptions of the Atlantic meridional overturning circulation (AMOC). The amplitude of this LIG variability is greater than that observed in Holocene records. Episodic Greenland ice melt and runoff as a result of excess warmth may have contributed to AMOC weakening and increased climate instability throughout the LIG.

SELECTION OF CITATIONS
SEARCH DETAIL
...