Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biochem Parasitol ; 245: 111411, 2021 09.
Article in English | MEDLINE | ID: mdl-34492239

ABSTRACT

Toxoplasma gondii is a protozoan parasite that causes opportunistic infection in immunocompromised individuals. The parasite forms latent tissue cysts that are refractory to current treatments and give rise to life-threatening reactivated infection following immune suppression. Previously, we showed that guanabenz sharply reduces brain cyst count in BALB/c mice harboring latent toxoplasmosis; however, whether cyst count would change once drug treatment stopped was not addressed. In the present study, we observed a rebound in brain cysts following the discontinuation of guanabenz or a guanabenz-pyrimethamine combination therapy. The re-expansion of brain cysts was not accompanied by symptoms of acute toxoplasmosis. We also tested whether the rebound in cyst counts could be ameliorated by administering pyrimethamine during or after guanabenz treatment.


Subject(s)
Guanabenz , Toxoplasma , Toxoplasmosis , Animals , Guanabenz/therapeutic use , Mice , Mice, Inbred BALB C , Recurrence , Toxoplasmosis/drug therapy
2.
mBio ; 12(1)2021 01 26.
Article in English | MEDLINE | ID: mdl-33500345

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that persists in its vertebrate hosts in the form of dormant tissue cysts, which facilitate transmission through predation. The parasite must strike a balance that allows it to disseminate throughout its host without killing it, which requires the ability to properly counter host cell defenses. For example, oxidative stress encountered by Toxoplasma is suggested to impair parasite replication and dissemination. However, the strategies by which Toxoplasma mitigates oxidative stress are not yet clear. Among eukaryotes, environmental stresses induce the integrated stress response via phosphorylation of a translation initiation factor, eukaryotic initiation factor 2 (eIF2). Here, we show that the Toxoplasma eIF2 kinase TgIF2K-B is activated in response to oxidative stress and affords protection. Knockout of the TgIF2K-B gene, Δtgif2k-b, disrupted parasite responses to oxidative stresses and enhanced replication, diminishing the ability of the parasite to differentiate into tissue cysts. In addition, parasites lacking TgIF2K-B exhibited resistance to activated macrophages and showed greater virulence in an in vivo model of infection. Our results establish that TgIF2K-B is essential for Toxoplasma responses to oxidative stress, which are important for the parasite's ability to establish persistent infection in its host.IMPORTANCEToxoplasma gondii is a single-celled parasite that infects nucleated cells of warm-blooded vertebrates, including one-third of the human population. The parasites are not cleared by the immune response and persist in the host by converting into a latent tissue cyst form. Development of tissue cysts can be triggered by cellular stresses, which activate a family of TgIF2 kinases to phosphorylate the eukaryotic translation initiation factor TgIF2α. Here, we establish that the TgIF2 kinase TgIF2K-B is activated by oxidative stress and is critical for maintaining oxidative balance in the parasite. Depletion of TgIF2K-B alters gene expression, leading to accelerated growth and a diminished ability to convert into tissue cysts. This study establishes that TgIF2K-B is essential for the parasite's oxidative stress response and its ability to persist in the host as a latent infection.


Subject(s)
Host-Parasite Interactions , Oxidative Stress , Toxoplasma/metabolism , Toxoplasma/pathogenicity , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Fibroblasts/parasitology , Foreskin/cytology , Gene Knockout Techniques , Humans , Male , Phosphorylation , Stress, Physiological , Toxoplasma/enzymology , Virulence
3.
mBio ; 11(4)2020 07 07.
Article in English | MEDLINE | ID: mdl-32636244

ABSTRACT

Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.


Subject(s)
Cell Movement , Endoplasmic Reticulum/metabolism , Host-Pathogen Interactions , Toxoplasma/metabolism , Unfolded Protein Response , Animals , Calcium/metabolism , Cells, Cultured , Endoplasmic Reticulum/parasitology , Endoplasmic Reticulum Stress , Fibroblasts/metabolism , Fibroblasts/parasitology , Membrane Proteins/metabolism , Mice , Protein Serine-Threonine Kinases/metabolism , Toxoplasma/pathogenicity , Toxoplasmosis/parasitology
4.
Article in English | MEDLINE | ID: mdl-32540979

ABSTRACT

Toxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing the brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs) and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine-guanabenz showed synergistic efficacy in C57BL/6 mice yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz and ELQ-334 in vivo While we were unable to completely eliminate the brain cyst burden, we found that a combination treatment with ELQ-334 and pyrimethamine impressively reduced the brain cyst burden by 95% in C57BL/6 mice, which approached the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical studies of cocktail therapies designed to treat chronic toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Animals , Guanabenz , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Toxoplasmosis, Animal/drug therapy
5.
Mol Biochem Parasitol ; 232: 111203, 2019 09.
Article in English | MEDLINE | ID: mdl-31381949

ABSTRACT

Toxoplasma gondii is a protozoan parasite that has a tremendous impact on human health and livestock. High seroprevalence among humans and other animals is facilitated by the conversion of rapidly proliferating tachyzoites into latent bradyzoites that are housed in tissue cysts, which allow transmission through predation. Epigenetic mechanisms contribute to the regulation of gene expression events that are crucial in both tachyzoites as well as their development into bradyzoites. Acetylation of histones is one of the critical histone modifications that is linked to active gene transcription. Unlike most early-branching eukaryotes, Toxoplasma possesses two GCN5 homologues, one of which, GCN5b, is essential for parasite viability. Surprisingly, GCN5b does not associate with most of the well-conserved proteins found in the GCN5 complexes of other eukaryotes. Of particular note is that GCN5b interacts with multiple putative transcription factors that have plant-like DNA-binding domains denoted as AP2. To understand the function of GCN5b and its role(s) in epigenetic gene regulation of stage switching, we performed co-immunoprecipitation of GCN5b under normal and bradyzoite induction conditions. We report the greatest resolution of the GCN5b complex to date under these various culture conditions. Moreover, reciprocal co-IPs were performed with distinct GCN5b-interacting AP2 factors (AP2IX-7 and AP2XII-4) to delineate the interactomes of each putative transcription factor. Our findings suggest that GCN5b is associated with at least two distinct complexes that are characterized by two different pairs of AP2 factors, and implicate up to four AP2 proteins to be involved with GCN5b-mediated gene regulation.


Subject(s)
Histone Acetyltransferases/metabolism , Lysine Acetyltransferases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Transcription Factors/metabolism , Acetylation , Animals , Gene Expression Regulation , Histone Acetyltransferases/genetics , Histones/genetics , Histones/metabolism , Humans , Lysine Acetyltransferases/genetics , Protein Binding , Protozoan Proteins/genetics , Toxoplasma/enzymology , Toxoplasma/genetics , Transcription Factors/genetics
6.
mBio ; 10(2)2019 04 30.
Article in English | MEDLINE | ID: mdl-31040237

ABSTRACT

Toxoplasma gondii is an intracellular parasite that has infected one-third of humans. The infection is permanent because the replicative form (tachyzoite) converts into a latent tissue cyst form (bradyzoite) that evades host immunity and is impervious to current drugs. The continued presence of these parasitic cysts hinders treatment and leads to chronic infection that has been linked to behavioral changes in rodents and neurological disease in humans. How these behavioral changes occur, and whether they are due to parasite manipulation or the host response to infection, remains an outstanding question. We previously showed that guanabenz possesses antiparasitic activity; here, we show that guanabenz reproducibly lowers brain cyst burden up to 80% in chronically infected male and female BALB/cJ mice when given intraperitoneally but not when administered by gavage or in food. Regardless of the administration route, guanabenz reverses Toxoplasma-induced hyperactivity in latently infected mice. In contrast, guanabenz increases cyst burden when given to chronically infected C57BL/6J mice yet still reverses Toxoplasma-induced hyperactivity. Examination of the brains from chronically infected BALB/cJ and C57BL/6J mice shows that guanabenz decreases inflammation and perivascular cuffing in each strain. Our study establishes a robust model for cyst reduction in BALB/cJ mice and shows for the first time that it is possible to reverse a key behavioral change associated with latent toxoplasmosis. The rescue from parasite-induced hyperactivity correlates with a decrease in neuroinflammation rather than reduced cyst counts, suggesting that some behavioral changes arise from host responses to infection.IMPORTANCEToxoplasma gondii is a common parasite of animals, including up to one-third of humans. The single-celled parasite persists within hosts for the duration of their life as tissue cysts, giving rise to chronic infection. Latent toxoplasmosis is correlated with neurological dysfunction in humans and results in dramatic behavioral changes in rodents. When infected, mice and rats adapt behaviors that make them more likely to be devoured by cats, the only host that supports the sexual stage of the parasite. In this study, we establish a new mouse model of tissue cyst depletion using a drug called guanabenz and show that it is possible to reverse a key behavior change back to normal in infected animals. We also show that the mechanism appears to have nothing to do with parasite cyst burden but rather the degree of neuroinflammation produced by chronic infection.


Subject(s)
Antiprotozoal Agents/administration & dosage , Guanabenz/administration & dosage , Hyperkinesis/drug therapy , Toxoplasmosis, Cerebral/drug therapy , Toxoplasmosis, Cerebral/pathology , Animals , Brain/pathology , Disease Models, Animal , Female , Inflammation/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Treatment Outcome
7.
Article in English | MEDLINE | ID: mdl-30181373

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite that has infected one-third of the population. Upon infection of warm-blooded vertebrates, the replicating form of the parasite (tachyzoite) converts into a latent form (bradyzoite) present in tissue cysts. During immune deficiency, bradyzoites can reconvert into tachyzoites and cause life-threatening toxoplasmosis. We previously reported that translational control through phosphorylation of the α subunit of T. gondii eukaryotic initiation factor 2 (eIF2α) (TgIF2α) is a critical component of the parasite stress response. Diverse stresses can induce the conversion of tachyzoites to bradyzoites, including those disrupting the parasite's endoplasmic reticulum (ER) (ER stress). Toxoplasma possesses four eIF2α kinases, one of which (TgIF2K-A) localizes to the parasite ER analogously to protein kinase R-like endoplasmic reticulum kinase (PERK), the eIF2α kinase that responds to ER stress in mammalian cells. Here, we investigated the effects of a PERK inhibitor (PERKi) on Toxoplasma Our results show that the PERKi GSK2606414 blocks the enzymatic activity of TgIF2K-A and reduces TgIF2α phosphorylation specifically in response to ER stress. PERKi also significantly impeded multiple steps of the tachyzoite lytic cycle and sharply lowered the frequency of bradyzoite differentiation in vitro Pretreatment of host cells with PERKi prior to infection did not affect parasite infectivity, and PERKi still impaired parasite replication in host cells lacking PERK. In mice, PERKi conferred modest protection from a lethal dose of Toxoplasma Our findings represent the first pharmacological evidence supporting TgIF2K-A as an attractive new target for the treatment of toxoplasmosis.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Toxoplasma/drug effects , Toxoplasmosis/drug therapy , eIF-2 Kinase/antagonists & inhibitors , Animals , Cell Differentiation/drug effects , Cells, Cultured , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/parasitology , Endoplasmic Reticulum Stress/drug effects , Female , Humans , Mice , Mice, Inbred BALB C , Parasites/drug effects , Parasites/metabolism , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , Protein Processing, Post-Translational/drug effects , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Toxoplasmosis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...