Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 46(4): 1082-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20080223

ABSTRACT

Activin A belongs to the TGF-beta superfamily and plays an important role in bone metabolism. It was reported that a soluble form of extracellular domain of the activin receptor type IIA (ActRIIA) fused to the Fc domain of murine IgG, an activin antagonist, has an anabolic effect on bone in intact and ovariectomized mice. The present study was designed to examine the skeletal effect of human ActRIIA-IgG1-Fc (ACE-011) in non-human primates. Young adult female Cynomolgus monkeys were given a biweekly subcutaneous injection of either 10mg/kg ACE-011 or vehicle (VEH) for 3months. Treatment effects were evaluated by histomorphometric analysis of the distal femur, femoral midshaft, femoral neck and 12th thoracic vertebrae, by muCT analysis of femoral neck and by biomarkers of bone turnover. Compared to VEH, at the distal femur ACE-011-treated monkeys had significantly increased cancellous bone volume (+93%), bone formation rate per bone surface (+166%) and osteoblast surface (+196%) indicating an anabolic action. Monkeys treated with ACE-011 also had decreased osteoclast surface and number. No differences were observed in parameters of cortical bone at the midshaft of the femur. Similar to distal femur, ACE-011-treated monkeys had significantly greater cancellous bone volume, bone formation rate and osteoblast surface at the femoral neck relative to VEH. A significant increase in bone formation rate and osteoblast surface with a decrease in osteoclast surface was observed in thoracic vertebrae. muCT analysis of femoral neck indicated more plate-like structure in ACE-011-treated monkeys. Monkeys treated with ACE-011 had no effect on serum bone-specific alkaline phosphatase and CTX at the end of the study. These observations demonstrate that ACE-011 is a dual anabolic-antiresorptive compound, improving cancellous bone volume by promoting bone formation and inhibiting bone resorption in non-human primates. Thus, soluble ActRIIA fusion protein may be useful in the prevention and/or treatment of osteoporosis and other diseases involving accelerated bone loss.


Subject(s)
Activins/metabolism , Bone Density/physiology , Femur/metabolism , Recombinant Fusion Proteins/administration & dosage , Thoracic Vertebrae/metabolism , Animals , Bone Density/drug effects , Cell Count , Collagen Type I/blood , Enzyme-Linked Immunosorbent Assay , Female , Femur/drug effects , Macaca fascicularis , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteogenesis/physiology , Random Allocation , Recombinant Fusion Proteins/metabolism , Statistics, Nonparametric , Thoracic Vertebrae/drug effects
2.
Bone ; 46(1): 64-71, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19781677

ABSTRACT

A recent study suggests that activin inhibits bone matrix mineralization, whereas treatment of mice with a soluble form of the activin type IIA receptor markedly increases bone mass and strength. To further extend these observations, we determined the skeletal effects of inhibiting activin signaling through the ActRIIA receptor in a large animal model with a hormonal profile and bone metabolism similar to humans. Ten female cynomolgus monkeys (Macaca fascicularis) were divided into two weight-matched groups and treated biweekly, for 3 months, with either a subcutaneous injection 10 mg/kg of a soluble form of the ActRIIA receptor fused with the Fc portion of human IgG(1) (ACE-011) or vehicle (VEH). Bone mineral density (BMD), micro-architecture, compressive mechanical properties, and ash fraction were assessed at the end of the treatment period. BMD was significantly higher in ACE-011 treated individuals compared to VEH: +13% (p=0.003) in the 5th lumbar vertebral body and +15% (p=0.05) in the distal femur. In addition, trabecular volumetric bone density at the distal femur was 72% (p=0.0004) higher than the VEH-treated group. Monkeys treated with ACE-011 also had a significantly higher L5 vertebral body trabecular bone volume (p=0.002) and compressive mechanical properties. Ash fraction of L4 trabecular bone cores did not differ between groups. These results demonstrate that treatment with a soluble form of ActRIIA (ACE-011) enhances bone mass and bone strength in cynomolgus monkeys, and provide strong rationale for exploring the use of ACE-011 to prevent and/or treat skeletal fragility.


Subject(s)
Activin Receptors, Type II/pharmacology , Bone Density/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Macaca fascicularis/metabolism , Animals , Bone Density Conservation Agents/pharmacology , Female , Humans
3.
Protein Sci ; 17(1): 16-21, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18042673

ABSTRACT

Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form. On this basis, we propose that mature aggrecanases exist as an ensemble of at least two isomers, only one of which is proteolytically active.


Subject(s)
ADAM Proteins/chemistry , Procollagen N-Endopeptidase/chemistry , ADAMTS4 Protein , ADAMTS5 Protein , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Protein Conformation
4.
Peptides ; 27(7): 1877-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16574278

ABSTRACT

Beta-secretase 1 (BACE1) is an aspartic protease believed to play a critical role in Alzheimer's disease. Inhibitors of this enzyme have been designed by incorporating the non-cleavable hydroxyethylene and statine isosteres into peptides corresponding to BACE1 substrate sequences. We sought to develop new methods to quickly characterize and optimize inhibitors based on the statine core. Minimal sequence requirements for binding were first established using both crystallography and peptide spot synthesis. These shortened peptide inhibitors were then optimized by using spot synthesis to perform iterative cycles of substitution and deletion. The present study resulted in the identification of novel "bis-statine" inhibitors shown by crystallography to have a unique binding mode. Our results demonstrate the application of peptide spot synthesis as an effective method for enhancing peptidomimetic drug discovery.


Subject(s)
Amino Acids/chemistry , Biochemistry/methods , Endopeptidases/chemistry , Peptides/chemistry , Protease Inhibitors/pharmacology , Amino Acid Sequence , Amyloid Precursor Protein Secretases , Animals , Biotinylation , CHO Cells , Cricetinae , Crystallization , Crystallography , Models, Molecular , Molecular Sequence Data , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...