Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38591511

ABSTRACT

Binders formulated with activated alkali materials to replace Portland cement, which has high polluting potential due to CO2 emissions in its manufacture, have increasingly been developed. The objective of this study is to evaluate the main properties of activated alkali materials (AAM) produced by blast furnace slag, fly ash, and metakaolin. Initially, binders were characterized by their chemical, mineralogical and granulometric composition. Later, specimens were produced, with molarity variation between 4.00 and 5.50, using the binders involved in the research. In preparing the activating solution, sodium hydroxide and silicate were used. The evaluated properties of AAM were consistency, viscosity, water absorption, density, compressive strength (7 days of cure), calorimetry, mineralogical analysis by X-ray diffraction, and morphological analysis by scanning electron microscopy. The results of evaluation in the fresh state demonstrate that metakaolin has the lowest workability indices of the studied AAM. The results observed in the hardened state indicate that the metakaolin activation process is optimized with normal cure and molarity of 4.0 and 4.5 mol/L, obtaining compressive strength results after 7 days of curing of approximately 30 MPa. The fly ash activation process is the least intense among the evaluated binders. This can be seen from the absence of phases formed in the XRD in the compositions containing fly ash as binder. Unlike blast furnace slag and metakaolin, the formation of sodalite, faujasite or tobermorite is not observed. Finally, the blast furnace slag displays more intense reactivity during thermal curing, obtaining compressive strength results after 7 days of curing of around 25 MPa. This is because the material's reaction kinetics are low but can be increased in an alkaline environment, and by the effect of temperature. From these results, it is concluded that each precursor has its own activation mechanism, observed by the techniques used in this research. From the results obtained in this study, it is expected that the alkaline activation process of the types of binders evaluated herein will become a viable alternative for replacing Portland cement, thus contributing to cement technology and other cementitious materials.

2.
Materials (Basel) ; 16(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37445092

ABSTRACT

The search for alternative materials to replace ordinary Portland cement has been the object of work that enhances the investigation of the use of pozzolanic materials and the reduction of the carbon footprint with supplementary cementitious materials. However, not all materials are available to meet the large-scale demand for cement replacement. A relevant exception is the calcined clay, a material found worldwide that, when subjected to appropriate heat treatment, presents pozzolanic reactivity and can be used as a supplementary material to cement. This review presents, through a systematic search, methods for measuring the pozzolanic reactivity of calcined clays, namely, direct, indirect, qualitative, quantitative, chemical and physical methods such as electrical conductivity (Lùxan), the force activity index, the modified Chapelle, R3, Frattini test, thermal analysis, X-ray diffraction and X-ray fluorescence spectrometry. The most usual methods to assess the pozzolanic reactivity of calcined clays were exposed and analyzed. It should be pointed out that there is greater use of the Frattini and modified Chapelle methods as well as the analysis of the mechanical strength behavior of the material in cementitious matrices. X-ray diffraction and thermal analysis were exposed as the most used correlation methods but it was also concluded that different tests are needed to generate accurate results.

3.
Polymers (Basel) ; 15(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36904550

ABSTRACT

The use of plant fibers in cementitious composites has been gaining prominence with the need for more sustainable construction materials. It occurs due to the advantages natural fibers provide to these composites, such as the reduction of density, fragmentation, and propagation of cracks in concrete. The consumption of coconut, a fruit grown in tropical countries, generates shells that are improperly disposed of in the environment. The objective of this paper is to provide a comprehensive review of the use of coconut fibers and coconut fiber textile mesh in cement-based materials. For this purpose, discussions were conducted on plant fibers, the production and characteristics of coconut fibers, cementitious composites reinforced with coconut fibers, cementitious composites reinforced with textile mesh as an innovative material to absorb coconut fibers, and treatments of coconut fiber for improved product performance and durability. Finally, future perspectives on this field of study have also been highlighted. Thus, this paper aims to understand the behavior of cementitious matrices reinforced with plant fibers and demonstrate that coconut fiber has a high capacity to be used in cementitious composites instead of synthetic fibers.

4.
Polymers (Basel) ; 14(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35631925

ABSTRACT

The use of natural lignocellulosic fibers has become popular all over the world, as they are abundant, low-cost materials that favor a series of technological properties when used in cementitious composites. Due to its climate and geographic characteristics, Brazil has an abundant variety of natural fibers that have great potential for use in civil construction. The objective of this work is to present the main concepts about lignocellulosic fibers in cementitious composites, highlighting the innovation and advances in this topic in relation to countries such as Brazil, which has a worldwide prominence in the production of natural fibers. For this, some common characteristics of lignocellulosic fibers will be observed, such as their source, their proportion of natural polymers (biological structure of the fiber), their density and other mechanical characteristics. This information is compared with the mechanical characteristics of synthetic fibers to analyze the performance of composites reinforced with both types of fibers. Despite being inferior in tensile and flexural strength, composites made from vegetable fibers have an advantage in relation to their low density. The interface between the fiber and the composite matrix is what will define the final characteristics of the composite material. Due to this, different fibers (reinforcement materials) were analyzed in the literature in order to observe their characteristics in cementitious composites. Finally, the different surface treatments through which the fibers undergo will determine the fiber-matrix interface and the final characteristics of the cementitious composite.

5.
Environ Sci Pollut Res Int ; 29(44): 66085-66099, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35488991

ABSTRACT

In recent years, the demand for clean water has been growing all over the world despite the different threats posed, including increasing pollution, increasing deforestation and climate change. Industrial activity is the second largest consumer of water, so highly industrialized regions are more susceptible to water stress. In this sense, reuse strategies have been progressively discussed and used around the world; however, in Brazil there is still place for many advances, whether due to lack of incentives, cultural issues in society, or poor regulation of the subject. The objective of this work was to carry out a diagnosis of raw water uptake by industries in one Hydrographic Region of the state of Rio de Janeiro and to propose a discussion on the adoption of water reuse practices for non-potable purposes from the use of treated effluents. A survey of the theoretical framework on the subject was carried out, as well as an analysis of sustainability indicators and reports of the companies, including the current licensing processes of large undertakings consuming water resources. With this study, it was possible to obtain the average cost of implementing a water reuse unit for an industry in the state of Rio de Janeiro-Brazil, which, despite still being expensive, has a strong tendency to use due to world water shortages. Finally, it was concluded that the state of Rio de Janeiro has a threat of water scarcity that could be aggravated in the coming years, if measures and investments in supply alternatives are not adopted (water reuse), and improvement in all stages of water management water resources.


Subject(s)
Rivers , Water Resources , Brazil , Industry , Water Supply
6.
Environ Sci Pollut Res Int ; 29(7): 9957-9970, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34510348

ABSTRACT

The use of the ornamental stone wastes, such as the originated from granite or marble, has been the subject of technological studies that evaluated its application in ceramic and cement materials; however, some complementary assessments, such as its life cycle assessment, are still not well explored in the literature. Therefore, the objective of this study was to discuss the main environmental impacts related to the manufacture of ceramic specimens, comparing conventional production versus the production of specimens incorporated with ornamental stone wastes. For this, the life cycle assessment was conducted in accordance with ISO 14.040 and 14.044. For this research, the ornamental stone wastes from the municipality of Cachoeiro do Itapemirim-ES and clay from the municipality of Campos dos Goytacazes-RJ were used. The system was modeled, using the SimaPro 9.0 software and the Ecoinvent database 3.3, for the life cycle assessment of the ceramic specimens and the potentiality regarding the use of ornamental stone wastes in ceramic materials using alternative input energy for burning, contributing to the effectiveness of the solid wastes reuse by the ceramic industry. The evaluation identified that the ornamental stone wastes incorporated into the ceramic specimens had significant potential in reducing environmental impacts and that the alternative input energy in burning stage makes them even more relevant. The study points out as the main result, the reduction of 35.74% of the impacts related to the category of the emission of greenhouse gases, and scarcity of mineral resources, 14.83% reduction, when compared to specimens to conventional brick production and alternative brick production, which emphasizes that the ceramic materials with wastes contribute to the mitigation of impacts.


Subject(s)
Ceramics , Greenhouse Gases , Animals , Clay , Life Cycle Stages , Solid Waste
7.
Materials (Basel) ; 14(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34501126

ABSTRACT

The ever-growing consumption and improper disposal of non-biodegradable plastic wastes is bringing worrisome perspectives on the lack of suitable environmentally correct solutions. Consequently, an increasing interest in the circular economy and sustainable techniques is being raised regarding the management of these wastes. The present work proposes an eco-friendly solution for the huge amount of discarded polyethylene terephthalate (PET) wastes by addition into soil-cement bricks. Room temperature molded 300 × 150 × 70 mm bricks were fabricated with mixtures of clay soil and ordinary Portland cement added with up to 30 wt.% of PET waste particles. Granulometric analysis of soil indicated it as sandy and adequate for brick fabrication. As for the PET particles, they can be considered non-plastic and sandy. The Atterberg consistency limits indicated that addition of 20 wt.% PET waste gives the highest plasticity limit of 17.3%; moreover, with PET waste addition there was an increase in the optimum moisture content for the compaction and decrease in specific weight. Standard tests showed an increase in compressive strength from 0.83 MPa for the plain soil-cement to 1.80 MPa for the 20 wt.% PET-added bricks. As for water absorption, all bricks displayed values between 15% and 16% that attended the standards and might be considered an alternative for non-structural applications, such as wall closures in building construction.

8.
Materials (Basel) ; 14(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361498

ABSTRACT

This review article proposes the identification and basic concepts of materials that might be used for the production of high-performance concrete (HPC) and ultra-high-performance concrete (UHPC). Although other reviews have addressed this topic, the present work differs by presenting relevant aspects on possible materials applied in the production of HPC and UHPC. The main innovation of this review article is to identify the perspectives for new materials that can be considered in the production of novel special concretes. After consulting different bibliographic databases, some information related to ordinary Portland cement (OPC), mineral additions, aggregates, and chemical additives used for the production of HPC and UHPC were highlighted. Relevant information on the application of synthetic and natural fibers is also highlighted in association with a cement matrix of HPC and UHPC, forming composites with properties superior to conventional concrete used in civil construction. The article also presents some relevant characteristics for the application of HPC and UHPC produced with alkali-activated cement, an alternative binder to OPC produced through the reaction between two essential components: precursors and activators. Some information about the main types of precursors, subdivided into materials rich in aluminosilicates and rich in calcium, were also highlighted. Finally, suggestions for future work related to the application of HPC and UHPC are highlighted, guiding future research on this topic.

9.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202009

ABSTRACT

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.

10.
Materials (Basel) ; 14(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071522

ABSTRACT

Ceramic-based wastes generated from different industrial activities have increasingly been reused as construction material incorporated into concrete. In general, these wastes just replace common concrete aggregates such as sand and gravel. In the present work, waste from clay brick industries composted of kaolinite minerals were for the first time evaluated for their potential to be reused as the pozzolan constituent of a cement for structural concrete. Initial standard testes revealed that the clay ceramic waste (CCW) displays high pozzolanicity. Concrete was then produced with 10 and 20 wt.% of CCW mixed with ordinary Portland cement (OPC) as its pozzolan constituent. Compression strength of these concretes and of pure OPC as a control sample were determined in standard tests after 14 and 28 days of curing. In addition, the corresponding density, water absorption, capillarity and percentage of voids were measured together with the evaluation of microstructural indices by scanning electron microscopy. The initial tests confirmed that the CCW is indeed an effective pozzolanic potential due to a chemical effect by reacting with CH to generate C-S-H. Moreover, the technological results proved that CCW might effectively replace the pozzolan cement constituent for structural concrete.

11.
Materials (Basel) ; 14(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924013

ABSTRACT

The fresh and rheological properties of alkali mortars activated by blast furnace slag (BFS) were investigated. Consistency tests, squeeze flow, dropping ball, mass density in the hardened state, incorporated air, and water retention were performed. Mortars were produced with the ratio 1:2:0.45 (binder:sand:water), using not only ordinary Portland cement for control but also BFS, varying the sodium content of the activated alkali mortars from 2.5 to 15%. The results obtained permitted understanding that mortars containing 2.5 to 7.5% sodium present a rheological behavior similar to cementitious mortars by the Bingham model. In turn, the activated alkali mortars containing 10 to 15% sodium showed a very significant change in the properties of dynamic viscosity, which is associated with a change in the type of model, starting to behave similar to the Herschel-Bulkley model. Evaluating the properties of incorporated air and water retention, it appears that mortars containing 12.5% and 15% sodium do not have compatible properties, which is related to the occupation of sodium ions in the interstices of the material. Thus, it is concluded that the techniques used were consistent in the rheological characterization of activated alkali mortars.

12.
Materials (Basel) ; 15(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35009419

ABSTRACT

Cementitious materials cause a great impact on the environment due to the calcination of clinker and the extraction of non-renewable mineral resources. In this work, the replacement of quartz sand from the river by PET sand was evaluated at levels of 10%, 20%, and 30%. Tests were performed in the fresh state through consistency, air retention, density, and incorporated air and in the hardened state for compressive strength, flexural strength, density, capillarity, and water absorption. The results show that PET sand is viable in contents of up to 10%, improving the mechanical properties of the mortar and without compromising its workability and incorporated air properties. Above that level, the loss of properties is very excessive, mainly of workability and incorporated air. The incorporated air of the 30% composition, for example, reaches 24%, an excessive value that impacts the properties of the hardened state, making it impossible to use the material at levels greater than 20%. It is concluded that the use of recycled PET sand is a possibility that contributes to sustainable development, as it reduces the extraction of quartz sand from the river, a non-renewable mineral resource.

13.
J Environ Manage ; 275: 111253, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32858268

ABSTRACT

In this work, the study of the biomass application of a microphyte plant Slavinia auriculata Aublet in red ceramic was carried out. The waste comes from the phytoremediation process, used in sewage treatment plants. Characterization tests were carried out by chemical, mineralogical, dilatometry, thermal and mass spectrometry techniques, where it was possible to prove that biomass is compatible in its composition for application in ceramic materials and also has great potential to act as a source of energy. The production of specimens was carried out using an industrial clay mass and incorporating 0-10% of biomass in samples produced by pressing and burned at temperatures between 750 and 1050 °C. Properties of plasticity, firing shrinkage, apparent drying and firing density, water absorption, compressive strength and tensile strength in flexion were evaluated, where the feasibility of using up to 2.5% biomass in ceramics firing in 1050 °C s was proven. Although the results of water absorption at the firing temperature of 1050 °C have increased from 18.3% to 19.4% with the use of 2.5% of the residue, the results of tensile strength in flexion have reduced from 4.80 to 3.75 MPa and the results of compressive strength have reduced from 27.6 to 22 MPa, the values obtained meet international recommendations and are in accordance with the recommendations of the bibliography. Finally, an economic analysis of the application of biomass in ceramic materials was carried out, where it was observed that it was possible to save up to 5.04% with the use of the biomass under study, providing an annual savings of $ 2668.8 for the ceramic industry.


Subject(s)
Ceramics , Clay , Biomass , Compressive Strength , Temperature
14.
Waste Manag ; 95: 43-52, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31351628

ABSTRACT

The world paper industry produces a great amount of industrial solid waste that undergoes a treatment process that can be either primary, secondary, or tertiary, in order to adapt the waste for correct disposal. The paper manufacturing industries search for the best way to dispose of their wastes, generally in landfills, but there are few studies proving the effectiveness of such measure from the environmental, technological and economic points of view. Knowing the characteristics of this waste and understanding the treatment process it is submitted to are fundamental issues to manage it and comply with environmental demands. The purpose of this paper is to perform a chemical, mineralogical, thermal, morphological, physical and environmental characterization of the paper and pulp industry wastes, in order to assess alternatives for their adequate disposal, such as controlled landfills, sanitation, incineration, and sea dumping. It was observed that the material presents physical, chemical, and morphological features that indicate the possibility of reusing it in other production chains, such as the ceramic industry, besides being classified as non-hazardous wastes. Furthermore, disposal in sanitary landfills presents advantages in environmental and technological terms.


Subject(s)
Refuse Disposal , Sewage , Incineration , Industrial Waste , Industry
15.
Materials (Basel) ; 12(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060268

ABSTRACT

Civil construction is one of the most resource-consuming sectors in the world. For this reason, the last years have witnessed the study of reusing industrial residues in building materials. The ornamental stone processing industry has a considerable environmental liability related to residue generation during the cutting stages of granite blocks. The objective of this work is to analyze the viability of incorporating granite residues, up to 100%, to substitute sand in coating mortars for building construction. Mortars without residue, as control, and incorporated with 20, 40, 60, 80, and 100% of granite residue were subjected to consistency tests, incorporated air and water retention together with the rheological characterization using the squeeze-flow and the dropping-ball methods. The results show that mortars with 40% granite residues presented greater plastic deformation, helping their applicability by also presenting improved technological properties in the fresh state.

SELECTION OF CITATIONS
SEARCH DETAIL
...