Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zygote ; 30(4): 536-542, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35357301

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a chronic hormonal turmoil that is demonstrated in 2.2-27% of women of pre-menopausal age. This disease is a complex multigenic disorder that results from the interaction between excess androgen expression, genetic susceptibility and environmental influences. PCOS is associated with 40% of female infertility and endometrial cancer. The WNT/ß-catenin signalling transduction pathway regulates aspects of cell proliferation, migration and cell fate determination in the tissue along with early embryonic development and controls the proper activation of the female reproductive system, along with regulating hormonal activity in ovarian granulosa cells. In the current study, we investigated the expression profiles of WNT/ß-catenin signalling pathway genes (AXIN2, FZD4, TCF4, WNT3, WNT4, WNT5A, WNT7A, WNT1, APC, GSK3B and ß-catenin) in a total of 13 oocyte samples. Seven of these samples were from polycystic women and six were from healthy women. The results of this study displayed the absence of expression of AXIN2, FZD4, TCF4, WNT5A, WNT3, WNT4 and WNT7A genes in ovaries from women with PCOS and from healthy women. While APC and ß-catenin expression levels were similar in the oocytes of both patients and controls, conversely, WNT1 and GSK3ß genes both showed elevated expression in the oocytes of patients with PCOS, therefore suggesting an association between aberrant expression of WNT1 and GSK3ß and the pathogenesis of PCOS. The observations of the current study could be helpful to provide evidence regarding the pathogenesis of PCOS and its treatment.


Subject(s)
Polycystic Ovary Syndrome , Female , Frizzled Receptors/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Oocytes/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Pregnancy , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
2.
Cardiovasc Res ; 117(13): 2677-2690, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34450625

ABSTRACT

AIMS: Coronary computed tomography angiography (CCTA) is a first-line modality in the investigation of suspected coronary artery disease (CAD). Mapping of perivascular fat attenuation index (FAI) on routine CCTA enables the non-invasive detection of coronary artery inflammation by quantifying spatial changes in perivascular fat composition. We now report the performance of a new medical device, CaRi-Heart®, which integrates standardized FAI mapping together with clinical risk factors and plaque metrics to provide individualized cardiovascular risk prediction. METHODS AND RESULTS: The study included 3912 consecutive patients undergoing CCTA as part of clinical care in the USA (n = 2040) and Europe (n = 1872). These cohorts were used to generate age-specific nomograms and percentile curves as reference maps for the standardized interpretation of FAI. The first output of CaRi-Heart® is the FAI-Score of each coronary artery, which provides a measure of coronary inflammation adjusted for technical, biological, and anatomical characteristics. FAI-Score is then incorporated into a risk prediction algorithm together with clinical risk factors and CCTA-derived coronary plaque metrics to generate the CaRi-Heart® Risk that predicts the likelihood of a fatal cardiac event at 8 years. CaRi-Heart® Risk was trained in the US population and its performance was validated externally in the European population. It improved risk discrimination over a clinical risk factor-based model [Δ(C-statistic) of 0.085, P = 0.01 in the US Cohort and 0.149, P < 0.001 in the European cohort] and had a consistent net clinical benefit on decision curve analysis above a baseline traditional risk factor-based model across the spectrum of cardiac risk. CONCLUSION: Mapping of perivascular FAI on CCTA enables the non-invasive detection of coronary artery inflammation by quantifying spatial changes in perivascular fat composition. We now report the performance of a new medical device, CaRi-Heart®, which allows standardized measurement of coronary inflammation by calculating the FAI-Score of each coronary artery. The CaRi-Heart® device provides a reliable prediction of the patient's absolute risk for a fatal cardiac event by incorporating traditional cardiovascular risk factors along with comprehensive CCTA coronary plaque and perivascular adipose tissue phenotyping. This integration advances the prognostic utility of CCTA for individual patients and paves the way for its use as a dual diagnostic and prognostic tool among patients referred for CCTA.


Subject(s)
Adipose Tissue/diagnostic imaging , Computed Tomography Angiography/standards , Coronary Angiography/standards , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Decision Support Techniques , Inflammation/diagnostic imaging , Nomograms , Adiposity , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Cloud Computing , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , England , Female , Germany , Heart Disease Risk Factors , Humans , Inflammation/mortality , Inflammation/therapy , Male , Middle Aged , Ohio , Predictive Value of Tests , Prognosis , Risk Assessment , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...