Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 69(8): 2512-2523, 2022 08.
Article in English | MEDLINE | ID: mdl-35119997

ABSTRACT

The accurate detection of physiologically-related events in photopletismographic (PPG) and phonocardiographic (PCG) signals, recorded by wearable sensors, is mandatory to perform the estimation of relevant cardiovascular parameters like the heart rate and the blood pressure. However, the measurement performed in uncontrolled conditions without clinical supervision leaves the detection quality particularly susceptible to noise and motion artifacts. This work proposes a new fully-automatic computational framework, based on convolutional networks, to identify and localize fiducial points in time as the foot, maximum slope and peak in PPG signal and the S1 sound in the PCG signal, both acquired by a custom chest sensor, described recently in the literature by our group. The event detection problem was reframed as a single hybrid regression-classification problem entailing a custom neural architecture to process sequentially the PPG and PCG signals. Tests were performed analysing four different acquisition conditions (rest, cycling, rest recovery and walking). Cross-validation results for the three PPG fiducial points showed identification accuracy greater than 93 % and localization error (RMSE) less than 10 ms. As expected, cycling and walking conditions provided worse results than rest and recovery, however reaching an accuracy greater than 90 % and a localization error less than 15 ms. Likewise, the identification and localization error for S1 sound were greater than 90 % and less than 25 ms. Overall, this study showcased the ability of the proposed technique to detect events with high accuracy not only for steady acquisitions but also during subject movements. We also showed that the proposed network outperformed traditional Shannon-energy-envelope method in the detection of S1 sound, reaching detection performance comparable to state of the art algorithms. Therefore, we argue that coupling chest sensors and deep learning processing techniques may disclose wearable devices to unobtrusively acquire health information, being less affected by noise and motion artifacts.


Subject(s)
Artifacts , Photoplethysmography , Algorithms , Heart Rate/physiology , Motion , Photoplethysmography/methods , Signal Processing, Computer-Assisted
2.
J Breath Res ; 13(3): 034001, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30754033

ABSTRACT

One of the main causes of the high mortality rate in lung cancer is the late-stage tumor detection. Early diagnosis is therefore essential to increase the chances of obtaining an effective treatment quickly thus increasing the survival rate. Current screening techniques are based on imaging, with low-dose computed tomography (LDCT) as the pivotal approach. Even if LDCT has high accuracy, its invasiveness and high false positive rate limit its application to high-risk population screening. A non-invasive, cost-efficient, and easy-to-use test should instead be designed as an alternative. Exhaled breath contains thousands of volatile organic compounds (VOCs). Since ancient times, it has been understood that changes in the VOCs' mixture may be directly related to the presence of a disease, and recent studies have quantified the change in the compounds' concentration. Analyzing exhaled breath to achieve lung cancer early diagnosis represents a non-invasive, low-cost, and user-friendly approach, thus being a promising candidate for high-risk lung cancer population screening. This review discusses technological solutions that have been proposed in the literature as tools to analyze exhaled breath for lung cancer diagnosis, together with factors that potentially affect the outcome of the analysis. Even if research on this topic started many years ago, and many different technological approaches have since been adopted, there is still no validated clinical application of this technique. Standard guidelines and protocols should be defined by the medical community in order to translate exhaled breath analysis to clinical practice.


Subject(s)
Breath Tests/methods , Early Detection of Cancer/methods , Lung Neoplasms/diagnosis , Humans
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1584-1587, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946198

ABSTRACT

Lung cancer high mortality rate is mainly related to late-stage tumor diagnosis. Survival rates and treatments could be greatly improved with an effective early diagnosis. Volatile organic compounds (VOCs) in exhaled breath have been known for long to be linked to the presence of a disease. Exhaled breath analysis for early diagnosis of lung cancer represents a non-invasive, low-cost and user-friendly approach. In this paper we present the design and development of an electronic nose based on a metal oxide sensors array for the early diagnosis of lung cancer. Breath samples collected from healthy controls (n=10) and lung cancer subjects (n=6) were analyzed by the electronic nose, and classification was performed using an artificial neural network (ANN). A sensitivity of 85.7%, specificity of 100%, and accuracy of 93.8% were reached with leave one out cross validation (LOOCV). The presented device demonstrates that a simple, cost-effective, and non-invasive approach based on exhaled breath analysis has the potential to be of great help in decreasing lung cancer mortality.


Subject(s)
Breath Tests , Electronic Nose , Lung Neoplasms , Metals/analysis , Volatile Organic Compounds , Exhalation , Humans , Lung Neoplasms/diagnosis , Oxides , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...