Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 16460, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013989

ABSTRACT

A novel, highly sensitive and eco-friendly micellar-mediated spectrofluorimetric method was developed and validated for the determination of the novel antiparkinsonian drug safinamide mesylate in the presence of its related precursor impurity, 4-hydroxybenzaldehyde. The proposed approach relies on increasing the inherent fluorescence emission at 296 nm of safinamide, by forming hydrogen bonds between the mentioned drug and sodium dodecyl sulfate in the micellar system using 0.1 N HCl as a solvent, following excitation at 226 nm. A thorough investigation was conducted into the experimental factors affecting spectrofluorimetric behavior of the studied drug. A linearity plot of safinamide over the concentration range of 10.0-1000.0 ng/mL against the relative fluorescence intensities was established. The proposed method demonstrated excellent sensitivity down to the nano-gram level with detection and quantitation limits of 1.91 and 5.79 ng/mL, respectively. The studied drug was effectively determined in Parkimedine® Tablets. Furthermore, the proposed method allows for ultrasensitive quantification of safinamide in spiked human plasma, with satisfactory percentage recovery (98.97-102.28%). Additionally, the greenness assessment using the advanced green certificate classification approach, the complementary green analytical procedure index (Complex-GAPI), and the analytical GREEness metric approach (AGREE), along with the practicality check using the Blue Applicability Grade Index in addition to the all-inclusive overall whiteness evaluation using the RGB-12 model were carried out. The outcomes demonstrated the effectiveness and whiteness of the proposed technique. Clearly, the suggested approach has the advantages of being simple, requiring no pretreatment steps, and relying solely on direct measuring procedures.


Subject(s)
Alanine , Antiparkinson Agents , Benzylamines , Micelles , Spectrometry, Fluorescence , Humans , Spectrometry, Fluorescence/methods , Alanine/analogs & derivatives , Alanine/blood , Antiparkinson Agents/blood , Antiparkinson Agents/analysis , Antiparkinson Agents/therapeutic use , Benzylamines/blood , Benzylamines/analysis , Benzylamines/chemistry , Tablets , Limit of Detection , Reproducibility of Results
2.
Eur J Drug Metab Pharmacokinet ; 49(4): 467-475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38748358

ABSTRACT

BACKGROUND AND OBJECTIVE: Astaxanthin is a naturally occurring carotenoid with high anti-oxidant properties, but it is a very lipophilic compound with low oral bioavailability. This study was conducted to compare the pharmacokinetic parameters of a novel astaxanthin preparation based on micellar solubilization technology, NovaSOL® 400-mg capsules (Test product), and those of astaxanthin 400-mg capsules (reference product), after single oral dose administration to healthy male adults. METHODS: A single oral dose (400 mg equivalent to 8 mg astaxanthin) of test and reference astaxanthin were administered with 240 mL of water to 12 volunteers according to crossover design, in two phases, with a washout period of 1 week in between. Blood samples were collected at hourly intervals for the first 12 h, then at 24.0, 48.0, and 72.0 h after administration. Aliquots of plasma were centrifuged and the clear supernatant was injected into the high performance liquid chromatography-diode array detection (HPLC-DAD) system. Plasma concentration of astaxanthin versus time profiles were constructed, and the primary pharmacokinetic parameters, maximum concentration (Cmax), area under concentration time curve from time of administration (0) to time (t) [AUC0-t] or to infinity ∞, [AUC0-∞],  half-life (T½) and time to reach Cmax (Tmax) were calculated. RESULTS: The test micellar astaxanthin reached a Cmax of 7.21 µg/ml after 3.67 h compared to only 3.86 µg/ml after 8.5 h for the reference native astaxanthin. CONCLUSION: Micellar formulation of astaxanthin is capable of producing a high concentration of astaxanthin in plasma in a shorter time, thereby expected to provide faster potential therapeutic efficacy.


Subject(s)
Area Under Curve , Cross-Over Studies , Healthy Volunteers , Micelles , Xanthophylls , Xanthophylls/pharmacokinetics , Xanthophylls/administration & dosage , Xanthophylls/blood , Humans , Male , Adult , Young Adult , Administration, Oral , Half-Life , Biological Availability , Capsules/pharmacokinetics , Chromatography, High Pressure Liquid/methods
3.
BMC Chem ; 17(1): 101, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598182

ABSTRACT

Cardiovascular disorders are among the leading causes of death worldwide, especially hypertension, a silent killer syndrome requiring multiple drug therapy for appropriate management. Hydrochlorothiazide is an extensively utilized thiazide diuretic that combines with several antihypertensive drugs for effective treatment of hypertension. In this study, sustainable, innovative and accurate high performance liquid chromatographic methods with diode array and tandem mass detectors (HPLC-DAD and LC-MS/MS) were developed, optimized and validated for the concurrent determination of Hydrochlorothiazide (HCT) along with five antihypertensive drugs, namely; Valsartan (VAL), Amlodipine besylate (AML), Atenolol (ATN), Amiloride hydrochloride (AMI), and Candesartan cilextil (CAN) in their diverse pharmaceutical dosage forms and in the presence of Chlorothiazide (CT) and Salamide (DSA) as HCT officially identified impurities. The HPLC-DAD separation was achieved utilizing Inertsil ODS-3 C18 column (250 × 4.6 mm, 5 µm) attached with photodiode array detection at 225.0 nm. Gradient elution was performed utilizing a mixture of solvent A (20.0 mM potassium dihydrogen phosphate, pH 3.0 ± 0.2, adjusted with phosphoric acid) and solvent B (acetonitrile) at ambient temperature. Linearity ranges were 0.1-100.0 µg/mL for HCT, VAL, AML and CAN, 0.05 -100.0 µg/mL for both ATN and AMI and 0.05-8.0 µg/mL for both CT and DSA. Additionally, this work describes the use of liquid chromatography-electrospray-tandem mass spectrometry for the accurate detection and quantification of the impurities; CT and DSA in the negative mode utilizing triple quadrupole mass spectrometry. The linearity ranges for those impurities were 1.0-200.0 ng/mL and 5.0-200.0 ng/mL for CT and DSA, respectively. Developed methods' validation was achieved in accordance with International Conference on Harmonization (ICH) guidelines. Upon applying liquid chromatographic techniques for the drug analysis, a green and sustainable assessment have to be handled due to the consumption of energy and many solvents. Through the use of the HEXAGON, Analytical Greenness (AGREE) and White Analytical Chemistry (WAC) tools, greenness and sustainability have been statistically assessed. The optimized HPLC-DAD and LC-MS/MS methods were fast, accurate, precise, and sensitive, and consequently could be applied for conventional analysis and quality control of the proposed drugs in their miscellaneous dosage forms for the purpose of reducing laboratory wastes, time of the analysis time, effort, and cost.

4.
RSC Adv ; 13(17): 11642-11651, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37063718

ABSTRACT

The large popularity and rapid technology of smartphones have opened new avenues for their integration into different analytical methodologies and drug quality monitoring as a portable, easily accessible, and user-friendly detector. Herein, a novel and portable smartphone-based high-performance thin layer chromatographic (HPTLC) approach is proposed for the simultaneous analysis of two urological drugs, alfuzosin and solifenacin, which treat benign prostatic hyperplasia accompanied by overactive bladder syndrome. First, chromatographic separation was accomplished using an ecofriendly mobile phase, then the developed plates were visualized using Dragendorff's reagent and photographed via a smartphone's rear-facing camera fixed on a fabricated two-illumination-source chamber. The intensities of the drug spots were quantified using open-source image analysis software ImageJ over the concentration ranges of 2.0 to 30.0 µg per band for both drugs with acceptable results in ICH validation parameters. To improve the method's accuracy and reproducibility, various construction and shooting key parameters were investigated and optimized. Moreover, the study was extended to compare the obtained results with those of a benchtop densitometric method using a Camag TLC Scanner 3 at 215.0 nm; the densitometric method provided an additional assessment tool for peak purity and was capable of assaying lower drug concentrations over a linearity range of 0.2-8.0 µg per band for alfuzosin and 0.1-6.0 µg per band for solifenacin. The fast, simple, reliable, green merits of the proposed HPTLC/smartphone method suggest that it is an excellent platform for assaying marketed combined capsules and assuring their content uniformity. Moreover, the high sensitivity of the densitometric method was used, for the first time, to determine the residual content of the cited drugs on manufacturing equipment surfaces for cleaning validation. Finally, the environmental impact of the developed methods was evaluated based on green analytical chemistry principles.

5.
BMC Chem ; 17(1): 14, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899384

ABSTRACT

Designing new, verified methodologies with a focus on sustainability, analytical efficiency, simplicity, and the environment has become a major priority for pharmaceutical quality control units. In this way, sustainable and selective separation-based methodologies were designed and validated for the concurrent estimation of amiloride hydrochloride (AML), hydrochlorothiazide (HCT) and timolol maleate (TIM) in their fixed dose formulation (Moducren® Tablets) along with hydrochlorothiazide potential impurities, salamide (DSA) and chlorothiazide (CT). The first method is a high performance thin layer chromatographic method (HPTLC-densitometry). The first developed method employed silica gel HPTLC F254 plates as stationary phase using a chromatographic developing system composed of ethyl acetate-ethanol-water-ammonia (8.5:1:0.5:0.3, by volume). The separated drug bands were densito-metrically measured at 220.0 nm for AML, HCT, DSA and CT and at 295.0 nm for TIM. The linearity was assessed over a wide concentration range, 0.5-10 µg/band, 1.0-16.0 µg/band and 1.0-14 µg/band for AML, HCT and TIM, in order and 0.05-1.0 µg/band for each of DSA and CT. The second method is capillary zone electrophoresis (CZE). The electrophoretic separation was achieved using background electrolyte (BGE), borate buffer 40.0 mM with pH 9.0 ± 0.2, at applied voltage of + 15 kV with on-column diode array detection at 200.0 nm. The method linearity was reached over the concentration range of 20.0-160.0 µg/mL, 10.0-200.0 µg/mL, 10.0-120.0 µg/mL for AML, HCT and TIM, respectively and 10.0-100.0 µg/mL for DSA. The suggested methods were optimized to achieve best performance and validated agreeing with the ICH guidelines. Assessment of methods' sustainability and greenness was performed using different greenness assessment tools.

6.
J Pharm Biomed Anal ; 223: 115165, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36403348

ABSTRACT

Baloxavir marboxil (BXM) is a novel orally administrated prodrug for the treatment of acute uncomplicated influenza. In the present study, a bioanalytical LC-MS/MS method was developed and validated for the quantification of baloxavir acid (BXA), the active form of baloxavir marboxil in plasma of healthy volunteers using dolutegravir as an internal standard (IS) following plasma protein precipitation with acetonitrile. BXA and the internal standard were chromatographically separated using Waters Xterra® MS C8 column (5 µm, 4.6 × 50 mm) and a mobile phase comprised of 10.0 mM ammonium formate pH 3.5 and acetonitrile (80:20, v/v) delivered at a flow rate of 0.6 mL/min. The transitions of m/z 484.00 → 247.0 and 420.30 → 277.1 for BXA and IS, respectively in multiple reaction monitoring (MRM) mode in a positive ESI interface were used for quantitation through triple-quad mass spectrometry, API 4000. The method linearity was proven across the concentration range of 0.5-200.0 ng/mL, adjusted, and validated completely in accordance with the bioanalytical guidelines of the United States-FDA. Finally, the present method was effectively applied for the pharmacokinetic study of BXA in healthy human volunteers with accepted reproducibility and ruggedness.


Subject(s)
Influenza, Human , Prodrugs , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Antiviral Agents , Influenza, Human/drug therapy , Reproducibility of Results , Acetonitriles
7.
J Sep Sci ; 46(1): e2200695, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36285376

ABSTRACT

Nowadays, Green Analytical Chemistry is widely applied to provide various analytical methods with eco-friendly procedures employing the least toxic, harmful reagents on humans and the environment without affecting the efficacy of the determination. Accordingly, two eco-friendly, accurate, and reliable high-performance thin-layer chromatography-densitometry and high-performance liquid chromatographic methods were established for the determination and separation of two antispasmodic drugs, namely phloroglucinol and trimethylphloroglucinol in their pure, combined dosage form along with phloroglucinol toxic impurity, 3,5-dichloroaniline. For high-performance thin-layer chromatography-densitometry, efficient separation was developed via utilizing the stationary phase of high-performance thin-layer chromatography silica gel 60 F254 plates and developing a system comprising of ethyl acetate-butanol-ammonia in the ratio of 8.0:2.0:0.2, by volume and scanning of the developed bands at 210.0 nm. The subsequent method is isocratic high-performance liquid chromatography with diode array detection in which separation was successively attained using XTerra RP-C18 (250 × 4.6 mm, 5 µm) column as stationary phase and methanol-10.0 mM phosphate buffer, pH 3.7 ± 0.1 as mobile phase in the ratio of 75.0:25.0, v/v at flow rate 1.0 ml/min and scanning at 220.0 nm. The developed liquid chromatography methods were validated according to the International Council for Harmonization guidelines, and all results acknowledged their efficacy. Additionally, the proposed methods worked well for assessing the cited drugs in binary combined commercially available pharmaceutical formulation. The greenness profile of the present methods was assessed and estimated using various assessment tools, namely; Green Analytical Procedure Index, analytical eco-scale method, National Environmental Method Index in addition to Analytical GREEnness tool to evaluate the greenness of the provided methods with a statistical comparison between them to assess the more green ones.


Subject(s)
Parasympatholytics , Humans , Reproducibility of Results , Chromatography, Thin Layer/methods , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
8.
BMC Chem ; 16(1): 73, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192758

ABSTRACT

Currently, all researchers are concentrating their efforts on countering the COVID-19 pandemic. The majority of patients are managed at home, according to recent statistics. An OTC triple action combination comprising paracetamol (PAR), aspirin (ASP), and diphenhydramine (DIPH) is commonly given for pain relief, fever control, and as a night-time sleep aid. This combination is currently recommended for COVID-19 patients as part of symptomatic treatment and management. In this work, three smart, simple, accurate, eco-friendly, and cost-effective spectrophotometric methods are developed for simultaneous determination of PAR, ASP, and DIPH in their combined over-the-counter caplet dosage form without any prior separation steps. The first method is the first derivative spectrophotometry (D1) which determined PAR at 259.7 nm. The second one is the dual-wavelength in ratio spectra (DWRS) for determination of ASP at 214.1 and 220.1 nm after using 10.0 µg/mL of PAR as a divisor, where PAR was a constant, and the wavelengths difference equal to zero for DIPH. The third method is the double divisor-ratio difference spectrophotometric one (DD-RD) which was based on using the sum of 15.0 µg/mL of each of PAR and ASP as a double divisor, and the difference in amplitudes was measured at two wavelengths ∆P(214.5-226.0) for determination of DIPH. The developed methods have been validated as per ICH guidelines. Furthermore, the three suggested methods were employed successfully to assay marketed pharmaceutical formulation and to investigate the content uniformity of the dosage units in accordance with the United States Pharmacopeia's guidelines. Finally, the greenness profile of the proposed methods was assessed and compared with the reported method using the analytical eco-scale system, national environmental method index (NEMI), green analytical procedure index (GAPI), and analytical greenness (AGREE) metric. The results from the proposed methods statistically agreed with those obtained by the reported one, with no significant differences in accuracy and precision.

9.
Sustain Chem Pharm ; 29: 100806, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35992213

ABSTRACT

Recent studies have reported that using certain antihypertensive therapies such as angiotensin II receptor blockers (ARBs) is associated with mitigation of fatal outcomes and enhancing clinical features of patients having hypertension during coronavirus pandemic. Thus, in the current work an innovative, effective, white and sustainable spectrophotometric technique called paired wavelength data processing technique (PWDPT) was developed for evaluation of recommended antihypertensive combination therapies incorporating candesartan cilexetil (CAN) and hydrochlorothiazide (HCT). This technique included three methods, namely, absorbance resolution (AR), amplitude resolution (PR) and ratio extraction (RE). Linearity ranges were (5.0 µg/mL - 50.0 µg/mL) and (2.0 µg/mL - 24.0 µg/mL) for CAN and HCT, respectively. Validation and confirmation of all suggested methods were conducted in accordance with ICH guidelines, producing satisfactory results within the accepted limits. Statistical comparison was achieved between the attained results from suggested methods and those attained from official methods, in which insignificant difference was existed. The suggested methods were successfully employed for identification of the studied drugs as well as determination of their spectral recognition and evaluation of the purity in their combined formulations. The proposed methods followed the principles of green analytical chemistry, where their greenness was evaluated and compared with the official potentiometric and HPLC methods via using four tools, namely, National Environmental Methods Index (NEMI), the Analytical Eco-Scale, the Green Analytical Procedure Index (GAPI) and Analytical greenness metric (AGREE) which affirmed the eco-friendly nature of the proposed methods. Moreover, studying the whiteness features was performed using the recently introduced RGB12 model. The acceptable results along with the sustainability, simplicity, affordability and low-cost of the proposed methods encourages their utilization in the quality control laboratories.

10.
Article in English | MEDLINE | ID: mdl-35810537

ABSTRACT

A fully validated, simple, rapid and reproducible liquid chromatography-tandem mass spectrometry method was developed to determine NHC (N-hydroxycytidine), the active metabolite of Molnupiravir (MOL) in human plasma; one of the limited treatment options for SARS-CoV-2 in plasma of healthy volunteers. The internal standard (IS) used was ribavirin. The extraction of analyte and IS from plasma was performed using acetonitrile as a solvent for protein precipitation. Agilent Zorbax Eclipse plus C18, 4.6 × 150 mm, (5 µm) was used for chromatographic separation using a mixture of methanol0.2 % acetic acid (5:95, v/v) as a mobile phase that was pumped at a flow rate of 0.9 mL/min. Detection was performed on a triple quadrupole mass spectrometer operating in multiple reaction monitoring (MRM) employing positive ESI interface using API4500 triple quadrupole tandem mass spectrometer system, with the transitions set at m/z 260.10 â†’ 128.10 and 245.10 â†’ 113.20 for NHC and IS respectively. Method validation was performed in accordance with United States FDA bioanalytical guidance. The concentration range of 20.0-10000.0 ng/mL was used to establish linearity via weighted linear regression approach (1/x2). Moreover, the analyzed pharmacokinetic data from twelve Egyptian healthy volunteers were used to develop a population pharmacokinetic model for NHC. The developed model was used to perform simulations and evaluate the current MOL dosing recommendations through calculating the maximum concentration (Cmax) "the safety metric" and area under the curve (AUC0-12 h) "the efficacy metric" for 1000 virtual subjects. Geometric mean ratios (GMR) with their associated 90% confidence intervals (CI) compared to literature values were computed. Geometric means of simulation-based Cmax and AUC0-12 were 3827 ng/mL (GMR = 1.05; 90% CI = 0.96-1.15) and 9320 ng.h/mL (GMR = 1.04; 90% CI = 0.97-1.11), respectively indicating that current MOL dosage can achieve the therapeutic targets and dose adjustment may not be required for the Egyptian population. The developed model could be used in the future to refine MOL dosage once further therapeutic targets are identified.


Subject(s)
Antiviral Agents , COVID-19 , Prodrugs , Tandem Mass Spectrometry , Antiviral Agents/blood , Chromatography, Liquid/methods , Cytidine/analogs & derivatives , Egypt , Healthy Volunteers , Humans , Hydroxylamines/blood , Reproducibility of Results , SARS-CoV-2 , Tandem Mass Spectrometry/methods
11.
J AOAC Int ; 106(1): 14-25, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-35900145

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is a common disorder leading to undesirable pain. Phloroglucinol (PHG) and trimethylphloroglucinol (TMG) are co-formulated as spasmolytic medication that is considered to be effective in reducing smooth muscle spasm. 3,5-Dichloroaniline (DCL) is a specified PHG pharmacopoeial impurity which needs to be monitored to avoid its toxic effects. OBJECTIVE: Different smart approaches are presented to provide simple, reliable, and economic spectrophotometric methods able to resolve the severe overlap in the spectra of PHG and TMG in their pure and pharmaceutical forms, in addition to their estimation in the presence of DCL as a toxic impurity of PHG without any need for initial separation. METHODS: The presented work includes univariate methods, derivative ratio (DR), ratio difference (RD), mean centering (MCR) and deconvulated Fourier method (DF), which were able to determine PHG and TMG simultaneously in their binary mixture. Firstly, DCL was estimated in the zero order, where the two drugs have zero absorption at 247.0 nm, and then its contribution was eliminated by applying ratio subtraction method. Multivariate chemometric partial least squares (PLS) and principal component regression (PCR) models were also applied to determine PHG and TMG simultaneously in the presence of the impurity, DCL. RESULTS: Univariate methods were applied in the range 5.0-30.0, 2.5-25.0, and 1.0-12.0 µg/mL for PHG, TMG, and DCL, respectively. The proposed chemometric models were used in the range 6.0-14.0, 5.0-25.0 and 2.0-10.0 µg/mL for PHG, TMG, and DCL, respectively. These analytical approaches succeeded in estimating the cited drugs in their pharmaceutical formulation and assessing content uniformity of dosage units. The methods were statistically compared with a reported HPLC method, and the results revealed no significance statistical difference. CONCLUSION: This work provides for the first time successful univariate and multivariate PLS and PCR methods to assess PHG and TMG in the presence of DCL as a toxic impurity along with content uniformity testing of dosage units. HIGHLIGHTS: Comparative univariate and multivariate spectrophotometric analytical approaches are presented, for the first time, for estimation of spasmolytic formulation of PHG and TMG in the presence of DCL as a PHG toxic impurity. Successful application to content uniformity testing of Stopspasm® dosage form is demonstrated. A statistical study, including t-tests and one-way analysis of variance (ANOVA), was conducted.


Subject(s)
Parasympatholytics , Analysis of Variance , Least-Squares Analysis , Spectrophotometry/methods
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121523, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35759933

ABSTRACT

Recent studies have reported that using certain antihypertensive therapies such as angiotensin II receptor blockers (ARBs) and calcium channel blocker (CCBs) is associated with reduction of fatal outcomes and improving clinical characteristics of patients suffering from hypertension during coronavirus pandemic. Thus, in the current work an effective, innovative and eco-friendly spectrophotometric manner namely, parent spectrum extraction (PSE)was established for evaluation of recommended triple antihypertensive combination therapies incorporate valsartan (VAL) as ARBs, amlodipine besylate as CCBs (AML) and hydrochlorothiazide (HCT)as diuretic into single-pill in challengeable ratio. PSE manner composed of two complementary steps, auxiliary resolution coupled with data analysis resolution(DAR)and it is characterized by resolving the spectral bands of the drugs and extraction of their discrete parent spectra (D0); accordingly, enabling determination of each analyte at its λmax. Auxiliary resolution of AML in triple mixture was applied to decrease complexity of overlapped spectra via constant multiplication (CM) followed by spectrum subtraction (SS) to obtain resolved mixture of VAL and HCT while data analysis resolution (DAR) of this binary mixture was applied via one of three novel methods namely, absorbance extraction (AE), peak-amplitude extraction (PE) and ratio extraction (RE) along with SS method. The proposed methods had analyzed VAL, AML and HCT in the range of 4.0-44.0 µg/mL, 4.0-40.0 µg/mL and 2.0-24.0 µg/mL, respectively with an excellent correlation coefficient (r ≥ 0.9999). Further, the proposed methods in PSR manner were validated as stated by ICH guidelines and it was found that accuracy and precision results are within the acceptable limit. The suggested procedures were effectively utilized for the concurrent quantification of VAL, AML and HCT in synthetic mixtures and tablets. The greenness of the proposed spectrophotometric methods was evaluated by National Environmental Methods Index (NEMI), the Analytical Eco-Scale, the Green Analytical Procedure Index (GAPI) and Analytical greenness metric (AGREE) where the four tools affirmed the eco-friendly nature of the proposed methods. A comparison between the outcomes of the studied methods with the official and reported ones was performed and no statistical difference was arisen between the methods regarding to accuracy and precision.The achieved results along with the simplicity, affordability and low-cost of the proposed methods recommended their appropriateness for the regular quality control examination and analysis of pure materials and pharmaceutical formulations as well as their applicability for the spectralprint recognition of the studied drugs.


Subject(s)
Coronavirus , Hypertension , Leukemia, Myeloid, Acute , Amlodipine/analysis , Amlodipine/therapeutic use , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/analysis , Antihypertensive Agents/therapeutic use , Humans , Hydrochlorothiazide/analysis , Hydrochlorothiazide/therapeutic use , Hypertension/diagnosis , Hypertension/drug therapy , Leukemia, Myeloid, Acute/chemically induced , Pandemics , Spectrophotometry/methods , Valsartan
13.
Anal Chim Acta ; 1200: 339599, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35256148

ABSTRACT

Solid contact ion-selective electrodes (ISEs) have witnessed versatile applications in pharmaceutical and biological analysis however they suffer from some limitations. Besides formation of water layer, the doped ion exchanger in sensing membrane fails to distinguish between two ionic species having relatively similar lipophilicity and carrying same charges. Those shortcomings practically hampered the simultaneous determination of alfuzosin and solifenacin in their combined pharmaceutical combination. Hence, this paper was directed to develop two carbon paste electrodes allowing their simultaneous determination based on molecular imprinted polymers (MIPs). Efforts were firstly directed to stabilize the potential signals through synthesis of polyaniline (PANI) nanoparticles with 26 nm particle size as confirmed by means of UV-spectrophotometry, Zeta-sizer and transmission electron microscope. This was followed by its doping at electrode/ion selective membrane interface leading to diminished potential drift, better Nernstian slopes and lower limit of detections. Secondly, MIPs for each drug were prepared by precipitation polymerization technique and fully characterized by Fourier-transform infrared spectroscopy, field-emission scanning electron microscope, differential scanning calorimetry, surface area analysis and rebinding studies. The prepared MIPs were then incorporated in membrane cocktail and doped over PANI layer. The graved cavities inside MIPs act as synthetic host-tailored receptors that could recognize and bind specifically to each drug. The obtained Nernstian slopes were 57.16 mV/decade for alfuzosin MIP-based sensor and 58.17 mV/decade for solifenacin MIP-based one with respective LOD values of 7.9 × 10-7 M and 8.9 × 10-8 M. Moreover, no interference was ostensibly detected from dosage form excipients, plasma constituents or degradation products/official impurities allowing quantification of alfuzosin and solifenacin in their combined capsule, spiked human plasma and in presence of their degradation products.


Subject(s)
Molecular Imprinting , Aniline Compounds , Carbon/chemistry , Electrodes , Humans , Ion-Selective Electrodes , Polymers/chemistry , Quinazolines , Solifenacin Succinate
14.
Microchem J ; 178: 107400, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35341079

ABSTRACT

Nowadays, all researchers are focused on combating the pandemic COVID-19. According to recent statistics, most patients are managed at home. An over-the-counter (OTC) triple action formula containing paracetamol (PAR), aspirin (ASP), and diphenhydramine (DIPH) is widely prescribed for pain, fever and as night-time sleep aid. For COVID-19 patients, this combination is now suggested as part of symptomatic therapy and prophylaxis. In this work, two simple liquid chromatographic approaches were designed for simultaneous determination of PAR, ASP, and DIPH in Excedrin® PM caplets, beside three specified official toxic impurities, namely, p-aminophenol, p-nitrophenol, and salicylic acid. The first method comprised high-performance thin-layer chromatographic separation coupled with densitometric quantification, on silica gel HPTLC 60 F254 aluminium sheets as the stationary phase, ethyl acetate-methanol-aqueous ammonium hydroxide (10.0: 2.0: 0.1, by volume) as the developing system and scanning was performed at 210.0 nm. The second one is a high-performance liquid chromatography coupled with diode array detector. Successful separation of the six components was performed on XTerra C18 column with isocratic elution of mobile phase 0.1% triethylamine acidified water: methanol (70:30, v/v) adjusted with o-phosphoric acid to pH 3.0 and methanol (90:10, v/v) with flow rate programming and detection at 210.0 nm. Validation of the proposed methods was performed according to ICH guidelines. Both methods were successfully used for quality control of the cited drugs in their marketed formulation. Moreover, the in-vitro release study was monitored using the proposed HPLC-DAD method. The greenness profile of the proposed methods was assessed and comparatively evaluated through various assessment tools, specifically; the analytical eco-scale system, national environmental method index (NEMI), green analytical procedure index (GAPI) and analytical greenness (AGREE) metric.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121063, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35219273

ABSTRACT

The realm of spectrophotometric analysis has witnessed a remarkable progress in inventing faster and simpler resolution techniques for spectrally overlapping drug mixtures. Eco-friendly and progressive spectrophotometric methods were firstly developed in this work, for the simultaneous determination of Dutasteride (DUT) and Silodosin (SLD) in their newly-marketed dosage form. The proposed methods focused on the unique spectral features of this mixture including spectral extension of SLD over DUT spectrum as well as existence of iso-absorptive points. By such way, the methods were classified into two categories; the first one was "fingerprint resolution techniques" including constant extraction coupled with spectrum subtraction and ratio subtraction coupled with constant multiplication methods. The former represented a new modification to the classical constant extraction method where one divisor and lower steps were manipulated instead. The second category was "iso-absorptive resolution techniques", such as absorptivity centering, absorbance subtraction and amplitude modulation methods. Different solvents were investigated where ethanol was found to be the optimum one regarding drugs solubility, signal sensitivity and environmental, health & safety (EHS) score. Validity of the suggested methods was assessed as per ICH-guidelines and found to be linear over concentration ranges of 5.0-90.0 µg/mL for DUT and 5.0-120.0 µg/mL for SLD. The methods were successfully applied for quantifying the cited drugs in their combined dosage form and evaluating their content uniformity. Moreover, the insignificant statistical difference between the proposed methods and official HPLC ones encourages the utilization of such spectrophotometric methods as greener and faster candidates, especially in modest quality control laboratories. Methods' greenness profile was finally guaranteed through several assessment tools, namely; national environmental methods index (NEMI), analytical eco-scale, green analytical procedure index (GAPI) and analytical greenness (AGREE) metric.


Subject(s)
Indoles , Chromatography, High Pressure Liquid , Dutasteride , Spectrophotometry/methods
16.
Microchem J ; 172: 106917, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34667334

ABSTRACT

Modern pharmaceutical analysis is paying a lot of attention to the stability of novel drug formulations as well as establishment of suitable stability-indicating approaches. In the current work, a comprehensive stability-indicating HPLC-DAD method has been developed and validated for determination of favipiravir (FAV) which is a novel and emerging antiviral option in COVID-19 treatment. The stability of FAV was examined under different stress conditions. FAV was found to be susceptible to acid, base hydrolysis and oxidative degradation. Structure elucidation of the forced degradation products was carried out using mass spectrometry (MS) operated in electrospray ionization mode. Effective separation of FAV and its induced degradation products was achieved using isocratic elution mode on Zorbax C18 column maintained at 30 °C. The mobile phase used was comprised of 25.0 mM phosphate buffer (pH 3.5 ± 0.05) containing 0.1% (w/v) heptane sulphonic acid sodium salt-methanol-acetonitrile (62:28:10, by volume), delivered at flow rate of 1.0 mL/min. The diode array detector signal for FAV was monitored at 321.0 nm over a concentration range of 6.25-250.00 µg/mL. The potential mechanisms for generation of degradation products were postulated through comparison of MS1 fragmentation pattern of FAV and its degradation products. Moreover, the proposed method was also extended to study the degradation kinetics. Additionally, dissolution profiling of FAV in different media was monitored. Clearly, the suggested approach is accurate, reliable, time-saving, and cost-effective. As a result, it may be utilized for regular quality control and stability assessment of FAV in its tablet dosage form.

17.
Bioanalysis ; 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34708661

ABSTRACT

Aim: Helicobacter pylori infection is a prevalent global bacterial infection that can potentially exaggerate symptoms of other serious infections like SARS-CoV-2 (COVID-19). Methodology: Herein, an efficient, accurate and cost-effective high-performance liquid chromatography-diode array detector method was developed and validated for determination of the novel triple therapy combination of tinidazole (TD), clarithromycin (CLR) and lansoprazole (LAN) in different analytical matrices (pharmaceutical formulation, dissolution media and spiked human plasma). Results: Successful chromatographic separation was achieved using Agilent Microsorb-MV 100-5 CN column (250 × 4.6 mm, 5 µm) and a mobile phase consisted of acetonitrile and 10.0 mM phosphate buffer, pH 7.5 ± 0.1 at flow rate of 1 ml/min via gradient elution. UV-detection was accomplished at 210.0 nm for CLR and 290.0 nm for TD and LAN. Conclusion: The developed method clearly provides a reliable, beneficial and cost-effective tool for quality control, dissolution testing and biological applications of the mentioned drugs.

18.
Biomed Chromatogr ; 35(9): e5132, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33792069

ABSTRACT

Two selective, sensitive and environmentally safe LC methods were developed and validated for determination of paracetamol, caffeine, ergotamine tartrate and metoclopramide in coformulated antimigraine tablets along with p-aminophenol, p-nitrophenol and theophylline as officially specified impurities. The first is based on high-performance thin-layer chromatography (HPTLC) coupled with densitometric quantitation. Separation was achieved on HPTLC silica gel 60 F254 plates as stationary phase using ethyl acetate:aqueous ammonium hydroxide solution:glacial acetic acid (10.0:0.4:0.1, by volume) as a developing system followed by scanning of the separated bands at 210.0 nm. The subsequent method depends on HPLC with diode array detection. The LC separation was accomplished on a Scharlau C18 (250 × 4.6 mm, 5 µm) column using a mixture of 20.0 mm sodium dihydrogen phosphate, pH 3.0, adjusted with o-phosphoric acid and methanol, at a flow rate of 1.3 mL/min in a gradient elution program. The separated peaks were detected at 210.0 nm. The proposed methods have been validated and proven to meet the requirements outlined in the International Council for Harmonisation (ICH) guidelines. The greenness profile evaluation was carried out using three tools, namely, the National Environmental Method Index, the Analytical EcoScale and the Green Analytical Procedure Index tool, and a comparative study was then conducted. Successful application of the developed methods for determination of the cited quaternary mixture in Metograine tablets confirms their suitability regarding the analytical performance and ecological impact in quality control assay and impurity profiling purposes.


Subject(s)
Analgesics , Chromatography, High Pressure Liquid/methods , Drug Contamination , Green Chemistry Technology/methods , Analgesics/analysis , Analgesics/chemistry , Chromatography, Thin Layer/methods , Drug Combinations , Humans , Limit of Detection , Linear Models , Migraine Disorders , Reproducibility of Results , Tablets/chemistry
19.
J Pharm Biomed Anal ; 199: 114057, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33831737

ABSTRACT

A novel, fast and sensitive LC-MS/MS method was developed and validated for the bioanalysis of the antiviral agent favipiravir (FAV); a promising candidate for treatment of SARS-CoV-2 (COVID-19) in human plasma using pyrazinamide as an internal standard (IS). Simple protein precipitation was adopted for plasma sample preparation using methanol. Chromatographic separation was accomplished on Eclipse plus C18 column (50 × 4.6 mm, 3.5 µm) using a mobile phase composed of methanol-0.2 % acetic acid (20:80, v/v) pumped at a flow rate 0.6 mL/min in an isocratic elution mode. The API4500 triple quadrupole tandem mass spectrometer was operated with multiple-reaction monitoring (MRM) in negative electrospray ionization interface for FAV and positive for IS. The MRM function was used for quantification, with the transitions set at m/z 156.00→ 113.00 and m/z 124.80→ 81.00 for FAV and IS. The method was optimized and fully validated in accordance to US-FDA guidelines. Linearity was acquired over a concentration range of 100.0-20000.0 ng/mL by computing using weighted linear regression strategy (1/x2). The proposed method was effectively applied for the pharmacokinetic evaluation of FAV and to demonstrate the bioequivalence of a new FAV formulation (test) and reference product in healthy Egyptian human volunteers.


Subject(s)
COVID-19 , SARS-CoV-2 , Amides , Antiviral Agents , Chromatography, Liquid , Egypt , Emergency Treatment , Healthy Volunteers , Humans , Pyrazines , Reproducibility of Results , Tandem Mass Spectrometry , Therapeutic Equivalency
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 213: 159-166, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30685554

ABSTRACT

Sofosbuvir (SOF) and velpatasvir (VEL) are recently co-formulated together for the treatment of hepatitis C virus. Smart and robust spectrophotometric methods were first developed and validated for quantification of SOF and VEL in their pure forms and in their combined pharmaceutical formulation without preliminary separation. VEL has two UV maxima at 302.5 and 337.0 nm that allow its direct determination by zero-order spectrophotometric method (D°) without any interference from SOF in a linear range of 2.0-30.0 µg/mL. On the other hand, determination of SOF in presence of VEL was carried out by four smart spectrophotometric methods, developed for resolving the overlaid spectra of these binary mixture. These methods are dual wavelength (DW), ratio subtraction (RS), ratio difference (RD) and first derivative of ratio spectra method (1DD). Linearity was checked and found to be in the range of 5.0-90.0 µg/mL for SOF by all of the aforementioned spectrophotometric methods. The developed methods were optimized and validated in accordance to the ICH guidelines. They were successfully utilized for estimating both SOF and VEL in their pure forms, laboratory prepared mixtures and in their pharmaceutical formulations with good recoveries. The methods can be easily applied for the routine analysis in quality control laboratories.


Subject(s)
Antiviral Agents/analysis , Carbamates/analysis , Drug Compounding , Heterocyclic Compounds, 4 or More Rings/analysis , Sofosbuvir/analysis , Spectrophotometry/methods , Analysis of Variance , Carbamates/chemistry , Chromatography, High Pressure Liquid , Heterocyclic Compounds, 4 or More Rings/chemistry , Limit of Detection , Reference Standards , Regression Analysis , Reproducibility of Results , Sofosbuvir/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...