Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38400157

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (ASCT) induces acquired immunodeficiency, potentially altering vaccine response. Herein, we aimed to explore the clinical tolerance and the humoral and cellular immune responses following anti-SARS-CoV-2 vaccination in ASCT recipients. METHODS: A prospective, non-randomized, controlled study that involved 43 ASCT subjects and 31 healthy controls. Humoral response was investigated using the Elecsys® test anti-SARS-CoV-2. Cellular response was assessed using the QFN® SARS-CoV-2 test. The lymphocyte cytokine profile was tested using the LEGENDplex™ HU Th Cytokine Panel Kit (12-plex). RESULTS: Adverse effects (AE) were observed in 69% of patients, encompassing pain at the injection site, fever, asthenia, or headaches. Controls presented more side effects like pain in the injection site and asthenia with no difference in the overall AE frequency. Both groups exhibited robust humoral and cellular responses. Only the vaccine transplant delay impacted the humoral response alongside a previous SARS-CoV-2 infection. Noteworthily, controls displayed a Th1 cytokine profile, while patients showed a mixed Th1/Th2 profile. CONCLUSIONS: Pfizer-BioNTech® anti-SARS-CoV-2 vaccination is well tolerated in ASCT patients, inducing robust humoral and cellular responses. Further exploration is warranted to understand the impact of a mixed cytokine profile in ASCT patients.

2.
Biomedicines ; 11(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38001946

ABSTRACT

(1) Background: Increased risk of myocardial infarction (MI) has been linked to several inflammatory conditions, including inflammatory bowel disease (IBD). However, the relationship between IBD and MI remains unclear. Here, we implemented an original mouse model combining IBD and MI to determine IBD's impact on MI severity and the link between the two diseases. (2) Methods: An IBD model was established by dextran sulfate sodium (DSS) administration in drinking water, alone or with oral C. albicans (Ca) gavage. IBD severity was assessed by clinical/histological scores and intestinal/systemic inflammatory biomarker measurement. Mice were subjected to myocardial ischemia-reperfusion (IR), and MI severity was assessed by quantifying infarct size (IS) and serum cardiac troponin I (cTnI) levels. (3) Results: IBD mice exhibited elevated fecal lipocalin 2 (Lcn2) and IL-6 levels. DSS mice exhibited almost two-fold increase in IS compared to controls, with serum cTnI levels strongly correlated with IS. Ca inoculation tended to worsen DSS-induced systemic inflammation and IR injury, an observation which is not statistically significant. (4) Conclusions: This is the first proof-of-concept study demonstrating the impact of IBD on MI severity and suggesting mechanistic aspects involved in the IBD-MI connection. Our findings could pave the way for MI therapeutic approaches based on identified IBD-induced inflammatory mediators.

3.
Trop Med Infect Dis ; 8(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999620

ABSTRACT

To map the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and evaluate immune response variations against this virus, it is essential to set up efficient serological tests locally. The SARS-CoV-2 immunogenic proteins were very expensive and not affordable for lower- middle-income countries (LMICs). For this purpose, the commonly used antigen, receptor-binding domain (RBD) of spike S1 protein (S1RBD), was produced using the baculovirus expression vector system (BEVS). In the current study, the expression of S1RBD was monitored using Western blot under different culture conditions. Different parameters were studied: the multiplicity of infection (MOI), cell density at infection, and harvest time. Hence, optimal conditions for efficient S1RBD production were identified: MOI 3; cell density at infection 2-3 × 106 cells/mL; and time post-infection (tPI or harvest time) of 72 h and 72-96 h, successively, for expression in shake flasks and a 7L bioreactor. A high production yield of S1RBD varying between 4 mg and 70 mg per liter of crude cell culture supernatant was achieved, respectively, in the shake flasks and 7L bioreactor. Moreover, the produced S1RBD showed an excellent antigenicity potential against COVID-19 (Wuhan strain) patient sera evaluated by Western blot. Thus, additional serological assays, such as in-house ELISA and seroprevalence studies based on the purified S1RDB, were developed.

4.
Diagn Microbiol Infect Dis ; 105(4): 115903, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805620

ABSTRACT

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Pandemics , Enzyme-Linked Immunosorbent Assay , Tunisia/epidemiology , Antibodies, Viral
5.
Parasit Vectors ; 16(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593519

ABSTRACT

BACKGROUND: The saliva of sand flies, vectors of Leishmania parasites, contains several components that exert pharmacological activity facilitating the acquisition of blood by the insect and contributing to the establishment of infection. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and validated its usefulness as a predictive biomarker of disease. PpSP32, whose functions are little known to date, is an intriguing protein due to its involvement in the etiopathogenesis of pemphigus, an auto-immune disease. Herein, we aimed to better decipher its role through the screening of several immunomodulatory activity either on lymphocytes or on monocytes/macrophages. METHODS: Peripheral mononuclear cells from healthy volunteers were stimulated with anti-CD3/anti-CD28 antibodies, phytohemagglutinin, phorbol 12-myristate 13-acetate/ionomycin, or lipopolysaccharide in the presence of increasing doses of PpSP32. Cell proliferation was measured after the addition of tritiated thymidine. Monocyte activation was tested by analyzing the expression of CD86 and HLA-DR molecules by flow cytometry. Cytokine production was analyzed in culture supernatants by ELISA. THP-1-derived macrophages were stimulated with LPS in the presence of increasing doses of PpSP32, and cytokine production was analyzed in culture supernatants by ELISA and multiplex technique. The effect of PpSP32 on NF-kB signaling was tested by Western blot. The anti-inflammatory activity of PpSP32 was assessed in vivo in an experimental inflammatory model of carrageenan-induced paw edema in rats. RESULTS: Our data showed that PpSP32 down-modulated the expression of activation markers in LPS-stimulated monocytes and THP1-derived macrophages. This protein negatively modulated the secretion of Th1 and Th2 cytokines by human lymphocytes as well as pro-inflammatory cytokines by monocytes, and THP1-derived macrophages. PpSP32 treatment led to a dose-dependent reduction of IκB phosphorylation. When PpSP32 was injected into the paw of carrageenan-injected rats, edema was significantly reduced. CONCLUSIONS: Our data indicates that PpSP32 induces a potent immunomodulatory effect on monocytes and THP-1-derived macrophages. This inhibition could be mediated, among others, by the modulation of the NF-kB signaling pathway. The anti-inflammatory activity of PpSP32 was confirmed in vivo in the carrageenan-induced paw edema model in rats.


Subject(s)
Phlebotomus , Humans , Rats , Animals , Phlebotomus/parasitology , Monocytes , NF-kappa B , Carrageenan , Lipopolysaccharides , Lymphocytes , Macrophages , Cytokines , Salivary Proteins and Peptides
6.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955792

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is characterized by a combination of inflammatory and demyelination processes in the spinal cord and brain. Conventional drugs generally target the autoimmune response, without any curative effect. For that reason, there is a great interest in identifying novel agents with anti-inflammatory and myelinating effects, to counter the inflammation and cell death distinctive of the disease. METHODS AND RESULTS: An in vitro assay showed that curcumin (Cur) at 10 µM enhanced the proliferation of C8-D1A cells and modulated the production of Th1/Th2/Th17 cytokines in the cells stimulated by LPS. Furthermore, two in vivo pathophysiological experimental models were used to assess the effect of curcumin (100 mg/kg). The cuprizone model mimics the de/re-myelination aspect in MS, and the experimental autoimmune encephalomyelitis model (EAE) reflects immune-mediated events. We found that Cur alleviated the neurological symptomatology in EAE and modulated the expression of lymphocytes CD3 and CD4 in the spinal cord. Interestingly, Cur restored motor and behavioral deficiencies, as well as myelination, in demyelinated mice, as indicated by the higher index of luxol fast blue (LFB) and the myelin basic protein (MBP) intensity in the corpus callosum. CONCLUSIONS: Curcumin is a potential therapeutic agent that can diminish the MS neuroimmune imbalance and demyelination through its anti-inflammatory and antioxidant effects.


Subject(s)
Curcumin , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Disease Models, Animal , Mice , Mice, Inbred C57BL , Models, Theoretical , Multiple Sclerosis/metabolism
7.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35893838

ABSTRACT

BACKGROUND: The mass vaccination campaign against SARS-CoV-2 was started in Tunisia on 13 March 2021 by using progressively seven different vaccines approved for emergency use. Herein, we aimed to evaluate the humoral and cellular immunity in subjects aged 40 years and over who received one of the following two-dose regimen vaccines against SARS-CoV-2, namely mRNA-1273 or Spikevax (Moderna), BNT162B2 or Comirnaty (Pfizer-BioNTech), Gam-COVID-Vac or Sputnik V (Gamaleya Research Institute), ChAdOx1-S or Vaxzevria (AstraZeneca), BIBP (Sinopharm), and Coronavac (Sinovac). MATERIAL AND METHODS: For each type of vaccine, a sample of subjects aged 40 and over was randomly selected from the national platform for monitoring COVID-19 vaccination and contacted to participate to this study. All consenting participants were sampled for peripheral blood at 3-7 weeks after the second vaccine dose to perform anti-S and anti-N serology by the Elecsys® (Lenexa, KS, USA) anti-SARS-CoV-2 assays (Roche® Basel, Switzerland). The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland) for a randomly selected sub-group. RESULTS: A total of 501 people consented to the study and, of them, 133 were included for the cellular response investigations. Both humoral and cellular immune responses against SARS-CoV-2 antigens differed significantly between all tested groups. RNA vaccines induced the highest levels of humoral and cellular anti-S responses followed by adenovirus vaccines and then by inactivated vaccines. Vaccines from the same platform induced similar levels of specific anti-S immune responses except in the case of the Sputnik V and the AstraZeneca vaccine, which exhibited contrasting effects on humoral and cellular responses. When analyses were performed in subjects with negative anti-N antibodies, results were similar to those obtained within the total cohort, except for the Moderna vaccine, which gave a better cellular immune response than the Pfizer vaccine and RNA vaccines, which induced similar cellular immune responses to those of adenovirus vaccines. CONCLUSION: Collectively, our data confirmed the superiority of the RNA-based COVID-19 vaccines, in particular that of Moderna, for both humoral and cellular immunogenicity. Our results comparing between different vaccine platforms in a similar population are of great importance since they may help decision makers to adopt the best strategy for further national vaccination programs.

8.
Diagnostics (Basel) ; 12(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35454019

ABSTRACT

Seroprevalence studies are essential to get an accurate estimate of the actual SARS-CoV-2 diffusion within populations. We report on the findings of the first serosurvey conducted in Tunis prior to the implementation of mass vaccination and analyzed factors associated with seropositivity. A household cross sectional survey was conducted (March-April 2021) in Tunis, spanning the end of the second wave and the beginning of the third wave of COVID-19. SARS-CoV-2 specific immunoglobulin G (IgG) antibodies to the spike (S-RBD) or the nucleocapsid (N) proteins were detected by in-house ELISA tests. The survey included 1676 individuals from 431 households. The mean age and sex ratio were 43.3 ± 20.9 years and 0.6, respectively. The weighted seroprevalence of anti-N and/or anti-S-RBD IgG antibodies was equal to 38.0% (34.6-41.5). In multivariate analysis, age under 10, no tobacco use, previous diagnosis of COVID-19, a history of COVID-19 related symptoms and contact with a COVID-19 case within the household, were independently associated with higher SARS-CoV-2 seroprevalence. More than one third of people living in Tunis obtained antibodies to SARS-CoV-2. Further studies are needed to monitor changes in these figures as Tunisian population is confronted to the subsequent epidemic waves and to guide the vaccine strategy.

9.
JCI Insight ; 5(23)2020 12 03.
Article in English | MEDLINE | ID: mdl-33108348

ABSTRACT

A possible etiological link between the onset of endemic pemphigus in Tunisia and bites of Phlebotomus papatasi, the vector of zoonotic cutaneous leishmaniasis, has been previously suggested. We hypothesized that the immunodominant P. papatasi salivary protein PpSP32 binds to desmogleins 1 and 3 (Dsg1 and Dsg3), triggering loss of tolerance to these pemphigus target autoantigens. Here, we show using far-Western blot that the recombinant PpSP32 protein (rPpSP32) binds to epidermal proteins with a MW of approximately 170 kDa. Coimmunoprecipitation revealed the interaction of rPpSP32 with either Dsg1 or Dsg3. A specific interaction between PpSP32 and Dsg1 and Dsg3 was further demonstrated by ELISA assays. Finally, mice immunized with rPpSP32 twice per week exhibited significantly increased levels of anti-Dsg1 and -Dsg3 antibodies from day 75 to 120. Such antibodies were specific for Dsg1 and Dsg3 and were not the result of cross-reactivity to PpSP32. In this study, we demonstrated for the first time to our knowledge a specific binding between PpSP32 and Dsg1 and Dsg3, which might underlie the triggering of anti-Dsg antibodies in patients exposed to sand fly bites. We also confirmed the development of specific anti-Dsg1 and -Dsg3 antibodies in vivo after PpSP32 immunization in mice. Collectively, our results provide evidence that environmental factors, such as the exposure to P. papatasi bites, can trigger the development of autoimmune antibodies.


Subject(s)
Desmogleins/immunology , Pemphigus/etiology , Phlebotomus/immunology , Adult , Animals , Autoantibodies/immunology , Autoantigens/immunology , Bunyaviridae/immunology , Bunyaviridae/pathogenicity , Bunyaviridae Infections/immunology , Cadherins , Desmogleins/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immune Tolerance/immunology , Immunoglobulin G , Male , Mice , Pemphigus/immunology , Psychodidae/immunology , Recombinant Proteins , Tunisia/epidemiology
10.
Article in English | MEDLINE | ID: mdl-31134162

ABSTRACT

Leishmaniases are neglected diseases, caused by intracellular protozoan parasites of the Leishmania (L.) genus. Although the principal host cells of the parasites are macrophages, neutrophils are the first cells rapidly recruited to the site of parasites inoculation, where they play an important role in the early recognition and elimination of the parasites. The nature of early interactions between neutrophils and Leishmania could influence the outcome of infection. Herein we aimed to evaluate whether different Leishmania strains, responsible for distinct clinical manifestations, could influence ex vivo functional activity of neutrophils. Human polymorphonuclear leukocytes were isolated from 14 healthy volunteers and the ex vivo infection of these cells was done with two L. infantum and one L. major strains. Infection parameters were determined and neutrophils activation was assessed by oxidative burst, degranulation, DNA release and apoptosis; cytokine production was measured by a multiplex flow cytometry analysis. Intracellular amastigotes were rescued to determine Leishmania strains survival. The results showed that L. infantum and L. major promastigotes similarly infected the neutrophils. Oxidative burst, neutrophil elastase, myeloperoxidase activity and apoptosis were significantly increased in infected neutrophils but with no differences between strains. The L. infantum-infected neutrophils induced more DNA release than those infected by L. major. Furthermore, Leishmania strains induced high amounts of IL-8 and stimulated the production of IL-1ß, TNF-α, and TGF-ß by human neutrophils. We observed that only one strain promoted IL-6 release by these neutrophils. The production of TNF-α was also differently induced by the parasites strains. All these results demonstrate that L. infantum and L. major strains were able to induce globally a similar ex vivo activation and apoptosis of neutrophils; however, they differentially triggered cytokines release from these cells. In addition, rescue of intracellular parasites indicated different survival rates further emphasizing on the influence of parasite strains within a species on the fate of infection.


Subject(s)
Leishmania infantum/immunology , Leishmania major/immunology , Leishmaniasis/microbiology , Leishmaniasis/parasitology , Neutrophils/immunology , Animals , Apoptosis , Cytokines , Disease Models, Animal , Host-Parasite Interactions , Humans , Leukocyte Elastase , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Neutrophils/metabolism , Respiratory Burst , Th1 Cells
11.
Cytokine ; 108: 182-189, 2018 08.
Article in English | MEDLINE | ID: mdl-29684755

ABSTRACT

The mechanisms leading to the disruption of self-tolerance in systemic lupus erythematosus (SLE) remain elusive. Herein, we aimed to decipher the molecular basis of the impaired response of mononuclear cells to TGF-ß1. The Smad3-pathway was explored on CD3+ lymphocytes in either active or non active SLE patients. An impaired transcription of TGF-ß1 target genes was demonstrated in the CD3+ lymphocytes of active SLE patients confirming that the defect involves T cells and pointing to its extrinsic nature. We further demonstrate that the defect did not result from an impaired TGF-ßRII expression or Smad2/3 phosphorylation suggesting that the mechanism lies downstream Smad2/3 translocation. Interestingly, the TGF-1 signaling defect did not correlate with an increased expression of soluble or membrane-bound IL-15. However, it was associated with an overexpression of IL-22. This suggests that an excessive activation of AhR pathway (through UV radiations, infections, etc.) could lead to the inhibition of immunosuppressive actions of TGF-ß thus disrupting immune homeostasis in SLE. Collectively, our data suggest that the impaired response to TGF-ß in SLE patients is associated with disease activity and provide new insights into the pathogenesis of SLE since it could establish the link between the environmental factors and the aberrancies of the immune system usually described in SLE.


Subject(s)
Interleukins/immunology , Lupus Erythematosus, Systemic/immunology , Signal Transduction , Transforming Growth Factor beta1/immunology , Adult , Aged , Female , Gene Expression , Humans , Immune Tolerance , Interleukin-15/genetics , Interleukin-15/immunology , Interleukins/genetics , Lupus Erythematosus, Systemic/pathology , Middle Aged , Phosphorylation , Smad2 Protein/metabolism , T-Lymphocytes/immunology , Tunisia , Young Adult , Interleukin-22
12.
J Invest Dermatol ; 138(3): 598-606, 2018 03.
Article in English | MEDLINE | ID: mdl-29054598

ABSTRACT

Nowadays, there is no available vaccine for human leishmaniasis. Animal experiments demonstrate that pre-exposure to sand fly saliva confers protection against leishmaniasis. Our preceding work in humans indicates that Phlebotomus papatasi saliva induces the production of IL-10 by CD8+ T lymphocytes. The neutralization of IL-10 enhanced the activation of a T-cell CD4+ population-producing IFN-γ. Herein, we used a biochemical and functional genomics approach to identify the sand fly salivary components that are responsible for the activation of the T helper type 1 immune response in humans, therefore constituting potential vaccine candidates against leishmaniasis. Fractionated P. papatasi salivary extracts were first tested on T lymphocytes of immune donors. We confirmed that the CD4+ lymphocytes proliferate and produce IFN-γ in response to stimulation with the proteins of molecular weight >30 kDa. Peripheral blood mononuclear cells from immune donors were transfected with plasmids coding for the most abundant proteins from the P. papatasi salivary gland cDNA library. Our result showed that the "yellow related proteins," PPTSP42 and PPTSP44, and "apyrase," PPTSP36, are the proteins responsible for the aforementioned cellular immune response and IFN-γ production. Strikingly, PPTSP44 triggered the highest level of lymphocyte proliferation and IFN-γ production. Multiplex cytokine analysis confirmed the T helper type 1-polarized response induced by these proteins. Importantly, recombinant PPTSP44 validated the results observed with the DNA plasmid, further supporting that PPTSP44 constitutes a promising vaccine candidate against human leishmaniasis.


Subject(s)
Apyrase/immunology , Leishmaniasis, Cutaneous/prevention & control , Phlebotomus/immunology , Protozoan Vaccines/immunology , Salivary Proteins and Peptides/immunology , Vaccination , Adolescent , Adult , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Interferon-gamma/biosynthesis , Lymphocyte Activation , Male , Th1 Cells/immunology , Young Adult
13.
Life Sci ; 188: 10-16, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28843496

ABSTRACT

AIMS: Acetamiprid (ACE) is an insecticide of the neonicotinoid family, the most widely used in the world. Herein, we assessed the effect of ACE on either the humoral or cellular immune responses of rodents. We also evaluated the role of curcumin in the restoration of altered immune responses after ACE treatment. METHODS: Five groups of five Swiss Albino mice were immunized intraperitoneally with the recombinant form of CFP32, a virulence factor of Mycobacterium tuberculosis. One group received ACE (5mg/kg) during 61days, a second one received ACE associated with curcumin (100mg/kg). Three control groups were included; one untreated, the second received corn oil and the third received curcumin alone. The humoral immune response was assessed by ELISA testing the anti-rCFP32 antibody concentrations in the serum. The cellular immune response was assessed by analyzing the cellular proliferation of the splenocytes stimulated in vitro by a mitogen or rCFP32. RESULTS: The ACE-treated mice showed a significant immunosuppression of the specific humoral response with a restorative effect of curcumin when administered with ACE. Similarly, ACE significantly decreased the level of splenocyte proliferation after either a non specific or a specific activation. Curcumin partially restores the antigen specific cellular immune response. Moreover, when administered alone, curcumin significantly inhibits the proliferative responses to the mitogen confirming its anti-mitogenic effect. Histological analysis showed alteration of spleens of mice exposed to ACE. SIGNIFICANCE: Altogether, our data indicated that ACE could potentially be harmful to the immune system.


Subject(s)
Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Pyridines/administration & dosage , Pyridines/toxicity , Animals , Antibodies/blood , Bacterial Proteins/immunology , Cell Proliferation/drug effects , Curcumin/pharmacology , Drug Interactions , Immunosuppressive Agents/pharmacology , Lymphocyte Activation/drug effects , Male , Mice , Neonicotinoids , Pyridines/antagonists & inhibitors , Spleen/drug effects
14.
Environ Sci Pollut Res Int ; 23(10): 9448-58, 2016 May.
Article in English | MEDLINE | ID: mdl-26988364

ABSTRACT

The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In the literature, carbamate (CM) pesticides have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, some autoimmune diseases and cancers. CMs may initiate, facilitate, or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors and modifying immune tolerance. In the present study, direct immunotoxicity, endocrine disruption and inhibition of esterases activities have been introduced as the main mechanisms of CMs-induced immune dysregulation. Moreover, the evidence on the relationship between CM pesticide exposure, dysregulation of the immune system and predisposition to different types of cancers, allergies, autoimmune and infectious diseases is criticized. In addition, in this review, we will discuss the relationship between immunotoxicity and cancer, and the advances made toward understanding the basis of cancer immune evasion.


Subject(s)
Carbamates/pharmacology , Carcinogens/pharmacology , Immune System/drug effects , Pesticides/pharmacology , Animals , Humans , Lymphocyte Activation , Lymphocytes/drug effects , Lymphocytes/immunology
15.
PLoS Negl Trop Dis ; 9(9): e0003991, 2015.
Article in English | MEDLINE | ID: mdl-26368935

ABSTRACT

BACKGROUND: During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva. CONCLUSIONS/SIGNIFICANCE: Our data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease.


Subject(s)
Immunoglobulin G/blood , Insect Bites and Stings/diagnosis , Insect Proteins/immunology , Insect Vectors , Phlebotomus/immunology , Salivary Proteins and Peptides/immunology , Serologic Tests/methods , Adolescent , Animals , Child , Cross-Sectional Studies , Dogs , Female , Humans , Insect Proteins/genetics , Male , Salivary Proteins and Peptides/genetics , Tunisia , Young Adult
16.
PLoS Negl Trop Dis ; 6(11): e1911, 2012.
Article in English | MEDLINE | ID: mdl-23209854

ABSTRACT

BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) due to Leishmania major is highly prevalent in Tunisia and is transmitted by a hematophagous vector Phlebotomus papatasi (P. papatasi). While probing for a blood meal, the sand fly injects saliva into the host's skin, which contains a variety of compounds that are highly immunogenic. We recently showed that the presence of anti-saliva antibodies was associated with an enhanced risk for leishmaniasis and identified the immunodominant salivary protein of Phlebotomus papatasi as a protein of approximately 30 kDa. METHODOLOGY/PRINCIPAL FINDINGS: We cloned and expressed in mammalian cells two salivary proteins PpSP30 and PpSP32 with predicted molecular weights close to 30 kDa from the Tunisian strain of P. papatasi. The two recombinant salivary proteins were purified by two-step HPLC (High-Performance Liquid Chromatography) and tested if these proteins correspond to the immunodominant antigen of 30 kDa previously shown to be recognized by human sera from endemic areas for ZCL and exposed naturally to P. papatasi bites. While recombinant PpSP30 (rPpSP30) was poorly recognized by human sera from endemic areas for ZCL, rPpSP32 was strongly recognized by the tested sera. The binding of human IgG antibodies to native PpSP32 was inhibited by the addition of rPpSP32. Consistently, experiments in mice showed that PpSP32 induced the highest levels of antibodies compared to other P. papatasi salivary molecules while PpSP30 did not induce any detectable levels of antibodies. CONCLUSIONS: Our findings demonstrate that PpSP32 is the immunodominant target of the antibody response to P. papatasi saliva. They also indicate that the recombinant form of PpSP32 is similar to the native one and represents a good candidate for large scale testing of human exposure to P. papatasi bites and perhaps for assessing the risk of contracting the disease.


Subject(s)
Antibodies/blood , Insect Proteins/immunology , Phlebotomus/immunology , Adult , Animals , Child , Cloning, Molecular , Humans , Immunoglobulin G/blood , Insect Proteins/chemistry , Insect Proteins/genetics , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/immunology , Sequence Analysis, DNA , Tunisia
18.
PLoS Negl Trop Dis ; 5(10): e1345, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21991402

ABSTRACT

BACKGROUND: The saliva of sand flies strongly enhances the infectivity of Leishmania in mice. Additionally, pre-exposure to saliva can protect mice from disease progression probably through the induction of a cellular immune response. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the cellular immune response against the saliva of Phlebotomus papatasi in humans and defined the phenotypic characteristics and cytokine production pattern of specific lymphocytes by flow cytometry. Additionally, proliferation and IFN-γ production of activated cells were analysed in magnetically separated CD4+ and CD8+ T cells. A proliferative response of peripheral blood mononuclear cells against the saliva of Phlebotomus papatasi was demonstrated in nearly 30% of naturally exposed individuals. Salivary extracts did not induce any secretion of IFN-γ but triggered the production of IL-10 primarily by CD8+ lymphocytes. In magnetically separated lymphocytes, the saliva induced the proliferation of both CD4+ and CD8+ T cells which was further enhanced after IL-10 blockage. Interestingly, when activated CD4+ lymphocytes were separated from CD8+ cells, they produced high amounts of IFN-γ. CONCLUSION: Herein, we demonstrated that the overall effect of Phlebotomus papatasi saliva was dominated by the activation of IL-10-producing CD8+ cells suggesting a possible detrimental effect of pre-exposure to saliva on human leishmaniasis outcome. However, the activation of Th1 lymphocytes by the saliva provides the rationale to better define the nature of the salivary antigens that could be used for vaccine development.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Phlebotomus/immunology , Th1 Cells/immunology , Adolescent , Adult , Aged , Animals , Cell Proliferation , Female , Flow Cytometry , Humans , Interferon-gamma/metabolism , Male , Middle Aged , Saliva/immunology , T-Lymphocyte Subsets/immunology , Young Adult
19.
Am J Trop Med Hyg ; 84(5): 653-61, 2011 May.
Article in English | MEDLINE | ID: mdl-21540371

ABSTRACT

Important data obtained in mice raise the possibility that immunization against the saliva of sand flies could protect from leishmaniasis. Sand fly saliva stimulates the production of specific antibodies in individuals living in endemic areas of parasite transmission. To characterize the humoral immune response against the saliva of Phlebotomus papatasi in humans, we carried out a prospective study on 200 children living in areas of Leishmania major transmission. We showed that 83% of donors carried anti-saliva IgG antibodies, primarily of IgG4 isotype. Positive sera reacted differentially with seven salivary proteins. The protein PpSP30 was prominently recognized by all the sera. The salivary proteins triggered the production of various antibody isotypes. Interestingly, the immunodominant PpSP30 was recognized by all IgG subclasses, whereas PpSP12 was not by IgG4. Immunoproteomic analyses may help to identify the impact of each salivary protein on the L. major infection and to select potential vaccine candidates.


Subject(s)
Antibody Formation , Leishmaniasis, Cutaneous/epidemiology , Phlebotomus/immunology , Saliva/immunology , Amino Acid Sequence , Animals , Blotting, Western , Child , Endemic Diseases , Humans , Insect Vectors , Leishmaniasis, Cutaneous/immunology , Mass Spectrometry , Mice , Molecular Sequence Data , Tunisia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...