Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Immunol ; 14: 1212981, 2023.
Article in English | MEDLINE | ID: mdl-37809085

ABSTRACT

Background: Psoriasis is a chronic immune-mediated inflammatory systemic disease with skin manifestations characterized by erythematous, scaly, itchy and/or painful plaques resulting from hyperproliferation of keratinocytes. Certolizumab pegol [CZP], a PEGylated antigen binding fragment of a humanized monoclonal antibody against TNF-alpha, is approved for the treatment of moderate-to-severe plaque psoriasis. Patients with psoriasis present clinical and molecular variability, affecting response to treatment. Herein, we utilized an in silico approach to model the effects of CZP in a virtual population (vPop) with moderate-to-severe psoriasis. Our proof-of-concept study aims to assess the performance of our model in generating a vPop and defining CZP response variability based on patient profiles. Methods: We built a quantitative systems pharmacology (QSP) model of a clinical trial-like vPop with moderate-to-severe psoriasis treated with two dosing schemes of CZP (200 mg and 400 mg, both every two weeks for 16 weeks, starting with a loading dose of CZP 400 mg at weeks 0, 2, and 4). We applied different modelling approaches: (i) an algorithm to generate vPop according to reference population values and comorbidity frequencies in real-world populations; (ii) physiologically based pharmacokinetic (PBPK) models of CZP dosing schemes in each virtual patient; and (iii) systems biology-based models of the mechanism of action (MoA) of the drug. Results: The combination of our different modelling approaches yielded a vPop distribution and a PBPK model that aligned with existing literature. Our systems biology and QSP models reproduced known biological and clinical activity, presenting outcomes correlating with clinical efficacy measures. We identified distinct clusters of virtual patients based on their psoriasis-related protein predicted activity when treated with CZP, which could help unravel differences in drug efficacy in diverse subpopulations. Moreover, our models revealed clusters of MoA solutions irrespective of the dosing regimen employed. Conclusion: Our study provided patient specific QSP models that reproduced clinical and molecular efficacy features, supporting the use of computational methods as modelling strategy to explore drug response variability. This might shed light on the differences in drug efficacy in diverse subpopulations, especially useful in complex diseases such as psoriasis, through the generation of mechanistically based hypotheses.


Subject(s)
Network Pharmacology , Psoriasis , Humans , Certolizumab Pegol/therapeutic use , Psoriasis/drug therapy , Psoriasis/chemically induced , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Immunoglobulin Fab Fragments/therapeutic use , Chronic Disease
2.
CPT Pharmacometrics Syst Pharmacol ; 12(7): 916-928, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37002678

ABSTRACT

Oncology treatments require continuous individual adjustment based on the measurement of multiple clinical parameters. Prediction tools exploiting the patterns present in the clinical data could be used to assist decision making and ease the burden associated to the interpretation of all these parameters. The goal of this study was to predict the evolution of patients with pancreatic cancer at their next visit using information routinely recorded in health records, providing a decision-support system for clinicians. We selected hematological variables as the visit's clinical outcomes, under the assumption that they can be predictive of the evolution of the patient. Multivariate models based on regression trees were generated to predict next-visit values for each of the clinical outcomes selected, based on the longitudinal clinical data as well as on molecular data sets streaming from in silico simulations of individual patient status at each visit. The models predict, with a mean prediction score (balanced accuracy) of 0.79, the evolution trends of eosinophils, leukocytes, monocytes, and platelets. Time span between visits and neutropenia were among the most common factors contributing to the predicted evolution. The inclusion of molecular variables from the systems-biology in silico simulations provided a molecular background for the observed variations in the selected outcome variables, mostly in relation to the regulation of hematopoiesis. In spite of its limitations, this study serves as a proof of concept for the application of next-visit prediction tools in real-world settings, even when available data sets are small.


Subject(s)
Artificial Intelligence , Pancreatic Neoplasms , Humans , Systems Biology , Computer Simulation , Pancreatic Neoplasms/genetics
3.
Arthritis Care Res (Hoboken) ; 75(1): 115-124, 2023 01.
Article in English | MEDLINE | ID: mdl-36278846

ABSTRACT

OBJECTIVE: Real-world studies are needed to identify factors associated with response to biologic therapies in patients with axial spondyloarthritis (SpA). The objective was to assess sex differences in response to tumor necrosis factor inhibitors (TNFi) and to explore possible risk factors associated with TNFi efficacy. METHODS: A total of 969 patients with axial SpA (315 females, 654 males) enrolled in the BIOBADASER registry (2000-2019) who initiated a TNFi (first, second, or further lines) were studied. Statistical and artificial intelligence (AI)-based data analyses were used to explore the association of sex differences and other factors to TNFi response, using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), to calculate the BASDAI50, with an improvement of at least 50% of the BASDAI score, and using the Ankylosing Spondylitis Disease Activity Score, calculated using the C-reactive protein level (ASDAS-CRP). RESULTS: Females had a lower probability of reaching a BASDAI50 response with a first line TNFi treatment at the second year of follow-up (P = 0.018) and a lesser reduction of the ASDAS-CRP at this time point. The logistic regression model showed lower BASDAI50 responses to TNFi in females (P = 0.05). Other factors, such as older age (P = 0.004), were associated with unfavorable responses. The AI data analyses reinforced the idea that age at the beginning of the treatment was the main factor associated with an unfavorable response. The combination of age with other clinical characteristics (female sex or cardiovascular risk factors and events) potentially contributed to an unfavorable response to TNFi. CONCLUSION: In this national multicenter registry, female sex was associated with less response to a first-line TNFi by the second year of follow-up. A higher age at the start of the TNFi was the main factor associated with an unfavorable response to TNFi.


Subject(s)
Spondylarthritis , Spondylitis, Ankylosing , Humans , Female , Male , Spondylitis, Ankylosing/drug therapy , Tumor Necrosis Factor Inhibitors/adverse effects , Spondylarthritis/diagnosis , Spondylarthritis/drug therapy , Artificial Intelligence , Tumor Necrosis Factor-alpha , Treatment Outcome , Registries , Severity of Illness Index
4.
BMC Cancer ; 22(1): 646, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35692051

ABSTRACT

BACKGROUND: Gastric Cancer (GC) is the fourth most deadly cancer worldwide. Enhanced understanding of its key epidemiological and molecular drivers is urgently needed to lower the incidence and improve outcomes. Furthermore, tumor biology in European (EU) and Latin American (LATAM) countries is understudied. The LEGACy study is a Horizon 2020 funded multi-institutional research approach to 1) detail the epidemiological features including risk factors of GC in current time and 2) develop cost-effective methods to identify and integrate biological biomarkers needed to guide diagnostic and therapeutic approaches with the aim of filling the knowledge gap on GC in these areas. METHODS: This observational study has three parts that are conducted in parallel during 2019-2023 across recruiting centers from four EU and four LATAM countries: Part 1) A case-control study (800 cases and 800 controls) using questionnaires on candidate risk factors for GC, which will be correlated with clinical, demographic and epidemiological parameters. Part 2) A case-control tissue sampling study (400 cases and 400 controls) using proteome, genome, microbiome and immune analyses to characterize advanced (stage III and IV) GC. Patients in this part of the study will be followed over time to observe clinical outcomes. The first half of samples will be used as training cohort to identify the most relevant risk factors and biomarkers, which will be selected to propose cost-effective diagnostic and predictive methods that will be validated with the second half of samples. Part 3) An educational study, as part of our prevention strategy (subjects recruited from the general public) to test and disseminate knowledge on GC risk factors and symptoms by a questionnaire and informative video. Patients could be recruited for more than one of the three LEGACy studies. DISCUSSION: The LEGACy study aims to generate novel, in-depth knowledge on the tumor biological characteristics through integrating epidemiological, multi-omics and clinical data from GC patients at an EU-LATAM partnership. During the study, cost-effective panels with potential use in clinical decision making will be developed and validated. TRIAL REGISTRATION: ClinicalTrials.gov Identifiers: Part 1: NCT03957031 . Part 2: NCT04015466 . Part 3: NCT04019808 .


Subject(s)
Stomach Neoplasms , Case-Control Studies , Clinical Decision-Making , Humans , Latin America/epidemiology , Phenotype , Risk Factors , Stomach Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/genetics
5.
Oncotarget ; 13: 237-256, 2022.
Article in English | MEDLINE | ID: mdl-35106125

ABSTRACT

Clinical evidence supports the combination of cabozantinib with an immune checkpoint inhibitor for the treatment of metastatic clear cell renal cell carcinoma (mccRCC) and suggests a synergistic antitumour activity of this combination. Nevertheless, the biological basis of this synergy is not fully characterized. We studied the mechanisms underpinning the potential synergism of cabozantinib combined with a PD1 inhibitor in mccRCC and delved into cabozantinib monotherapy properties supporting its role to partner these combinations. To model physiological drug action, we used a machine learning-based technology known as Therapeutic Performance Mapping Systems, applying two approaches: Artificial Neural Networks and Sampling Methods. We found that the combined therapy was predicted to exert a wide therapeutic action in the tumour and the microenvironment. Cabozantinib may enhance the effects of PD1 inhibitors on immunosurveillance by modulating the innate and adaptive immune system, through the inhibition of VEGF-VEGFR and Gas6-AXL/TYRO3/MER (TAM) axes, while the PD1 inhibitors may boost the antiangiogenic and pro-apoptotic effects of cabozantinib by modulating angiogenesis and T-cell cytotoxicity. Cabozantinib alone was predicted to restore cellular adhesion and hamper tumour proliferation and invasion. These data provide a biological rationale and further support for cabozantinib plus PD1 inhibitor combination and may guide future nonclinical and clinical research.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Anilides/pharmacology , Anilides/therapeutic use , Carcinoma, Renal Cell/pathology , Humans , Immune Checkpoint Inhibitors , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Machine Learning , Pyridines , Tumor Microenvironment , Vascular Endothelial Growth Factor A
6.
Front Psychiatry ; 12: 741170, 2021.
Article in English | MEDLINE | ID: mdl-34803764

ABSTRACT

Regulatory agencies encourage computer modeling and simulation to reduce the time and cost of clinical trials. Although still not classified in formal guidelines, system biology-based models represent a powerful tool for generating hypotheses with great molecular detail. Herein, we have applied a mechanistic head-to-head in silico clinical trial (ISCT) between two treatments for attention-deficit/hyperactivity disorder, to wit lisdexamfetamine (LDX) and methylphenidate (MPH). The ISCT was generated through three phases comprising (i) the molecular characterization of drugs and pathologies, (ii) the generation of adult and children virtual populations (vPOPs) totaling 2,600 individuals and the creation of physiologically based pharmacokinetic (PBPK) and quantitative systems pharmacology (QSP) models, and (iii) data analysis with artificial intelligence methods. The characteristics of our vPOPs were in close agreement with real reference populations extracted from clinical trials, as did our PBPK models with in vivo parameters. The mechanisms of action of LDX and MPH were obtained from QSP models combining PBPK modeling of dosing schemes and systems biology-based modeling technology, i.e., therapeutic performance mapping system. The step-by-step process described here to undertake a head-to-head ISCT would allow obtaining mechanistic conclusions that could be extrapolated or used for predictions to a certain extent at the clinical level. Altogether, these computational techniques are proven an excellent tool for hypothesis-generation and would help reach a personalized medicine.

7.
BMJ Open ; 11(11): e052140, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836903

ABSTRACT

DESIGN AND OBJECTIVES: A cross-sectional study to evaluate the impact of COVID-19 on the psychosocial sphere in both the general population and healthcare workers (HCWs). METHODS: The study was conducted in Catalonia (Spain) during the first wave of the COVID-19 pandemic when strict lockdown was in force. The study population included all people aged over 16 years who consented to participate in the study and completed the survey, in this case a 74-question questionnaire shared via social media using snowball sampling. A total of 56 656 completed survey questionnaires were obtained between 3 and 19 April 2020.The primary and secondary outcome measures included descriptive statistics for the non-psychological questions and the psychological impact of the pandemic, such as depression, anxiety, stress and post-traumatic stress disorder question scores. RESULTS: A n early and markedly negative impact on family finances, fear of working with COVID-19 patients and ethical issues related to COVID-19 care among HCWs was observed. A total of seven target groups at higher risk of impaired mental health and which may therefore benefit from an intervention were identified, namely women, subjects aged less than 42 years, people with a care burden, socioeconomically deprived groups, people with unskilled or unqualified jobs, patients with COVID-19 and HCWs working with patients with COVID-19. CONCLUSIONS: Active implementation of specific strategies to increase resilience and to prepare an adequate organisational response should be encouraged for the seven groups identified as high risk and susceptible to benefit from an intervention. TRIAL REGISTRATION NUMBER: NCT04378452.


Subject(s)
COVID-19 , Pandemics , Anxiety , Communicable Disease Control , Cross-Sectional Studies , Depression , Female , Humans , SARS-CoV-2 , Spain/epidemiology , Vulnerable Populations
8.
Syst Biol Reprod Med ; 67(4): 281-297, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34126818

ABSTRACT

Embryo implantation is one of the most inefficient steps in assisted reproduction, so the identifying drugs with a potential clinical application to improve it has a strong interest. This work applies artificial intelligence and systems biology-based mathematical modeling strategies to unveil potential treatments by computationally analyzing and integrating available molecular and clinical data from patients. The mathematical models of embryo implantation computationally generated here simulate the molecular networks underneath this biological process. Once generated, these models were analyzed in order to identify potential repositioned drugs (drugs already used for other indications) able to improve embryo implantation by modulating the molecular pathways involved. Interestingly, the repositioning analysis has identified drugs considering two endpoints: (1) drugs able to modulate the activity of proteins whose role in embryo implantation is already bibliographically acknowledged, and (2) drugs that modulate key proteins in embryo implantation previously predicted through a mechanistic analysis of the mathematical models. This second approach increases the scope open for examination and potential novelty of the repositioning strategy. As a result, a list of 23 drug candidates to improve embryo implantation after IVF was identified by the mathematical models. This list includes many of the compounds already tested for this purpose, which reinforces the predictive capacity of our approach, together with novel repositioned candidates (e.g., Infliximab, Polaprezinc, and Amrinone). In conclusion, the present study exploits existing molecular and clinical information to offer new hypotheses regarding molecular mechanisms in embryo implantation and therapeutic candidates to improve it. This information will be very useful to guide future research.Abbreviations: IVF: in vitro fertilization; EI: Embryo implantation; TPMS: Therapeutic Performance Mapping System; MM: mathematical models; ANN: Artificial Neuronal Networks; TNFα: tumour necrosis factor factor-alpha; HSPs: heat shock proteins; VEGF: vascular endothelial growth factor; PPARA: peroxisome proliferator activated receptor-α PXR: pregnane X receptor; TTR: transthyretin; BED: Biological Effectors Database; MLP: multilayer perceptron.


Subject(s)
Drug Repositioning , Fertilization in Vitro , Proteomics , Artificial Intelligence , Embryo Implantation , Humans , Vascular Endothelial Growth Factor A
9.
Oncotarget ; 12(4): 316-332, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33659043

ABSTRACT

Around 3-7% of patients with non-small cell lung cancer (NSCLC), which represent 85% of diagnosed lung cancers, have a rearrangement in the ALK gene that produces an abnormal activity of the ALK protein cell signaling pathway. The developed ALK tyrosine kinase inhibitors (TKIs), such as crizotinib, ceritinib, alectinib, brigatinib and lorlatinb present good performance treating ALK+ NSCLC, although all patients invariably develop resistance due to ALK secondary mutations or bypass mechanisms. In the present study, we compare the potential differences between brigatinib and alectinib's mechanisms of action as first-line treatment for ALK+ NSCLC in a systems biology-based in silico setting. Therapeutic performance mapping system (TPMS) technology was used to characterize the mechanisms of action of brigatinib and alectinib and the impact of potential resistances and drug interferences with concomitant treatments. The analyses indicate that brigatinib and alectinib affect cell growth, apoptosis and immune evasion through ALK inhibition. However, brigatinib seems to achieve a more diverse downstream effect due to a broader cancer-related kinase target spectrum. Brigatinib also shows a robust effect over invasiveness and central nervous system metastasis-related mechanisms, whereas alectinib seems to have a greater impact on the immune evasion mechanism. Based on this in silico head to head study, we conclude that brigatinib shows a predicted efficacy similar to alectinib and could be a good candidate in a first-line setting against ALK+ NSCLC. Future investigation involving clinical studies will be needed to confirm these findings. These in silico systems biology-based models could be applied for exploring other unanswered questions.

10.
Sci Rep ; 10(1): 22153, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335123

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a B lymphoid malignancy highly dependent on the microenvironment. Despite new targeted therapies such as ibrutinib and venetoclax, disease progression and relapse remain an issue. CLL cell interactions with the supportive tissue microenvironment play a critical role in disease pathogenesis. We used a platform for drug discovery based on systems biology and artificial intelligence, to identify drugs targeting key proteins described to have a role in the microenvironment. The selected compounds were screened in CLL cell lines in the presence of stromal cells to mimic the microenvironment and validated the best candidates in primary CLL cells. Our results showed that the commercial drug simvastatin was the most effective and selective out of the tested compounds. Simvastatin decreased CLL cell survival and proliferation as well as cell adhesion. Importantly, this drug enhanced the antitumor effect of venetoclax and ibrutinib. We proposed that systems biology approaches combined with pharmacological screening could help to find new drugs for CLL treatment and to predict new combinations with current therapies. Our results highlight the possibility of repurposing widely used drugs such as statins to target the microenvironment and to improve the efficacy of ibrutinib or venetoclax in CLL cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Systems Biology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biomarkers , Cell Proliferation , Cell Survival/drug effects , Drug Evaluation, Preclinical/methods , Drug Screening Assays, Antitumor/methods , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Models, Molecular , Reproducibility of Results , Signal Transduction/drug effects , Small Molecule Libraries , Structure-Activity Relationship , Systems Biology/methods , Tumor Microenvironment/drug effects
11.
PLoS One ; 15(10): e0240149, 2020.
Article in English | MEDLINE | ID: mdl-33006999

ABSTRACT

From January 2020, COVID-19 is spreading around the world producing serious respiratory symptoms in infected patients that in some cases can be complicated by the severe acute respiratory syndrome, sepsis and septic shock, multiorgan failure, including acute kidney injury and cardiac injury. Cost and time efficient approaches to reduce the burthen of the disease are needed. To find potential COVID-19 treatments among the whole arsenal of existing drugs, we combined system biology and artificial intelligence-based approaches. The drug combination of pirfenidone and melatonin has been identified as a candidate treatment that may contribute to reduce the virus infection. Starting from different drug targets the effect of the drugs converges on human proteins with a known role in SARS-CoV-2 infection cycle. Simultaneously, GUILDify v2.0 web server has been used as an alternative method to corroborate the effect of pirfenidone and melatonin against the infection of SARS-CoV-2. We have also predicted a potential therapeutic effect of the drug combination over the respiratory associated pathology, thus tackling at the same time two important issues in COVID-19. These evidences, together with the fact that from a medical point of view both drugs are considered safe and can be combined with the current standard of care treatments for COVID-19 makes this combination very attractive for treating patients at stage II, non-severe symptomatic patients with the presence of virus and those patients who are at risk of developing severe pulmonary complications.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Drug Repositioning , Melatonin/therapeutic use , Pneumonia, Viral/drug therapy , Pyridones/therapeutic use , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Databases, Pharmaceutical , Furin/metabolism , Humans , Melatonin/pharmacology , Pandemics , Pyridones/pharmacology , COVID-19 Drug Treatment
12.
Sci Transl Med ; 12(543)2020 05 13.
Article in English | MEDLINE | ID: mdl-32404508

ABSTRACT

Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adult , Africa , Antibodies, Protozoan , Child , Humans , Immunization , Infant , Leukocytes, Mononuclear , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum
13.
PLoS One ; 15(2): e0228926, 2020.
Article in English | MEDLINE | ID: mdl-32053711

ABSTRACT

Unveiling the mechanism of action of a drug is key to understand the benefits and adverse reactions of a medication in an organism. However, in complex diseases such as heart diseases there is not a unique mechanism of action but a wide range of different responses depending on the patient. Exploring this collection of mechanisms is one of the clues for a future personalized medicine. The Therapeutic Performance Mapping System (TPMS) is a Systems Biology approach that generates multiple models of the mechanism of action of a drug. Each molecular mechanism generated could be associated to particular individuals, here defined as prototype-patients, hence the generation of models using TPMS technology may be used for detecting adverse effects to specific patients. TPMS operates by (1) modelling the responses in humans with an accurate description of a protein network and (2) applying a Multilayer Perceptron-like and sampling strategy to find all plausible solutions. In the present study, TPMS is applied to explore the diversity of mechanisms of action of the drug combination sacubitril/valsartan. We use TPMS to generate a wide range of models explaining the relationship between sacubitril/valsartan and heart failure (the indication), as well as evaluating their association with macular degeneration (a potential adverse effect). Among the models generated, we identify a set of mechanisms of action associated to a better response in terms of heart failure treatment, which could also be associated to macular degeneration development. Finally, a set of 30 potential biomarkers are proposed to identify mechanisms (or prototype-patients) more prone of suffering macular degeneration when presenting good heart failure response. All prototype-patients models generated are completely theoretical and therefore they do not necessarily involve clinical effects in real patients. Data and accession to software are available at http://sbi.upf.edu/data/tpms/.


Subject(s)
Aminobutyrates/pharmacology , Systems Biology/methods , Tetrazoles/pharmacology , Valsartan/pharmacology , Aminobutyrates/adverse effects , Angiotensin Receptor Antagonists/therapeutic use , Biomarkers , Biphenyl Compounds , Computer Simulation , Drug Combinations , Heart/drug effects , Heart Failure/diagnosis , Humans , Neprilysin/pharmacology , Software , Stroke Volume/physiology , Tetrazoles/adverse effects , Valsartan/adverse effects , Ventricular Function, Left/physiology
14.
Front Neurol ; 10: 675, 2019.
Article in English | MEDLINE | ID: mdl-31293510

ABSTRACT

Numerous studies suggest that the increased activity of p38MAPK plays an important role in the abnormal immune and inflammatory response observed in the course of neurodegenerative diseases such as Alzheimer's disease. On the other hand, high levels of p38MAPK are present in the brain during normal aging, suggesting the existence of mechanisms that keep the p38MAPK-regulated pro-inflammatory activity within physiological limits. In this study, we show that high p38MAPK activity in the hippocampus of old mice is in part due to the reduction in membrane cholesterol that constitutively occurs in the aging brain. Mechanistically, membrane cholesterol reduction increases p38MAPK activity through the stimulation of a subset of tyrosine kinase receptors (RTKs). In turn, activated p38MAPK increases the expression and activity of the phosphatase DUSP2, which is known to reduce the activity of different MAPKs, including p38MAPK. These results suggest that the loss of membrane cholesterol that constitutively occurs with age takes part in a negative-feedback loop that keeps p38MAPK activity levels within physiological range. Thus, conditions that increase p38MAPK activity such as cellular stressors or that inhibit DUSP2 will amplify inflammatory activity with its consequent deleterious functional changes.

15.
Liver Int ; 39(7): 1246-1255, 2019 07.
Article in English | MEDLINE | ID: mdl-30597709

ABSTRACT

BACKGROUND: Several lines of evidence indicate that decompensated cirrhosis is characterized by the presence of systemic inflammation. Hepatorenal syndrome (HRS-AKI) is a unique type of renal failure that occurs at late stages of cirrhosis. However, confirmation of the presence and significance of such inflammatory response in HRS-AKI is lacking. AIM AND METHODS: To characterize the systemic inflammatory response, as estimated by measuring a large number of cytokines, in 161 patients hospitalized for an acute decompensation of cirrhosis: 44 patients without acute kidney injury (AKI), 63 patients with hypovolaemia-induced AKI and 58 patients with HRS-AKI. RESULTS: HRS-AKI was characterized by an altered cytokine profile compared to the other two groups, particularly IL-6, IL-8, TNF-α, VCAM-1, fractalkine and MIP-1α. The inflammatory response was not related to presence of bacterial infection, concomitant acute-on-chronic liver failure or severity of renal dysfunction. Patients who responded to terlipressin and albumin had only a decrease in TNF-α and RANTES after treatment without changes in other cytokines. Interestingly, patients with persistent HRS-AKI had higher levels of IP-10 and VCAM-1 compared to those with resolution of HRS-AKI. VCAM-1 was also an independent predictor of 3-month mortality. A systems biology analysis approach showed that the inflammatory status of HRS-AKI was similar to that of chronic nonhepatic inflammatory conditions, such as lupus erythematosus or inflammatory bowel disease. CONCLUSION: Hepatorenal syndrome is characterized by a marked systemic inflammatory state, reminiscent of that of nonhepatic inflammatory diseases, that correlates with patient outcomes.


Subject(s)
Acute Kidney Injury/mortality , Acute-On-Chronic Liver Failure/complications , Cytokines/blood , Hepatorenal Syndrome/mortality , Liver Cirrhosis/complications , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Acute-On-Chronic Liver Failure/therapy , Aged , Albumins/therapeutic use , Biomarkers/blood , Female , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/therapy , Humans , Inflammation/pathology , Kidney/physiopathology , Liver/physiopathology , Liver Cirrhosis/therapy , Liver Transplantation , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Spain , Survival Analysis , Terlipressin/therapeutic use , Vasoconstrictor Agents/therapeutic use
16.
Sci Rep ; 8(1): 1879, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382857

ABSTRACT

Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.


Subject(s)
Neuroprotective Agents/pharmacology , Peripheral Nervous System Diseases/drug therapy , Wounds and Injuries/drug therapy , Algorithms , Animals , Artificial Intelligence , Cell Line , Female , Machine Learning , Mice , Nerve Regeneration/drug effects , Radiculopathy/drug therapy , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Spinal Cord/drug effects , Spinal Nerve Roots/drug effects
17.
PLoS One ; 11(1): e0147626, 2016.
Article in English | MEDLINE | ID: mdl-26807587

ABSTRACT

Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Chromones/therapeutic use , Mefloquine/therapeutic use , Neuroprotective Agents/therapeutic use , Algorithms , Animals , Chromones/pharmacology , Computer Simulation , Drug Therapy, Combination , Humans , Mefloquine/pharmacology , Models, Theoretical , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects
18.
Mult Scler ; 21(2): 138-46, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25112814

ABSTRACT

The pathogenesis of multiple sclerosis (MS) involves alterations to multiple pathways and processes, which represent a significant challenge for developing more-effective therapies. Systems biology approaches that study pathway dysregulation should offer benefits by integrating molecular networks and dynamic models with current biological knowledge for understanding disease heterogeneity and response to therapy. In MS, abnormalities have been identified in several cytokine-signaling pathways, as well as those of other immune receptors. Among the downstream molecules implicated are Jak/Stat, NF-Kb, ERK1/3, p38 or Jun/Fos. Together, these data suggest that MS is likely to be associated with abnormalities in apoptosis/cell death, microglia activation, blood-brain barrier functioning, immune responses, cytokine production, and/or oxidative stress, although which pathways contribute to the cascade of damage and can be modulated remains an open question. While current MS drugs target some of these pathways, others remain untouched. Here, we propose a pragmatic systems analysis approach that involves the large-scale extraction of processes and pathways relevant to MS. These data serve as a scaffold on which computational modeling can be performed to identify disease subgroups based on the contribution of different processes. Such an analysis, targeting these relevant MS-signaling pathways, offers the opportunity to accelerate the development of novel individual or combination therapies.


Subject(s)
Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Drug Discovery , Humans
19.
Article in English | MEDLINE | ID: mdl-24790464

ABSTRACT

BACKGROUND: Perceived age has been defined as the age that a person is visually estimated to be on the basis of physical appearance. In a society where a youthful appearance are an object of desire for consumers, and a source of commercial profit for cosmetic companies, this concept has a prominent role. In addition, perceived age is also an indicator of overall health status in elderly people, since old-looking people tend to show higher rates of morbidity and mortality. However, there is a lack of objective methods for quantifying perceived age. METHODS: In order to satisfy the need of objective approaches for estimating perceived age, a novel algorithm was created. The novel algorithm uses supervised mathematical learning techniques and error retropropagation for the creation of an artificial neural network able to learn biophysical and clinically assessed parameters of subjects. The algorithm provides a consistent estimation of an individual's perceived age, taking into account a defined set of facial skin phenotypic traits, such as wrinkles and roughness, number of wrinkles, depth of wrinkles, and pigmentation. A nonintervention, epidemiological cross-sectional study of cases and controls was conducted in 120 female volunteers for the diagnosis of perceived age using this novel algorithm. Data collection was performed by clinical assessment of an expert panel and biophysical assessment using the ANTERA 3D(®) device. RESULTS AND DISCUSSION: Employing phenotype data as variables and expert assignments as objective data, the algorithm was found to correctly classify the samples with an accuracy of 92.04%. Therefore, we have developed a method for determining the perceived age of a subject in a standardized, consistent manner. Further application of this algorithm is thus a promising approach for the testing and validation of cosmetic treatments and aesthetic surgery, and it also could be used as a screening method for general health status in the population.

20.
Nutr Metab (Lond) ; 7: 88, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21143928

ABSTRACT

BACKGROUND: The prevalence of type 2 diabetes is increasing worldwide, accounting for 85-95% of all diagnosed cases of diabetes. Clinical trials provide evidence of benefits of low-carbohydrate ketogenic diets in terms of clinical outcomes on type 2 diabetes patients. However, the molecular events responsible for these improvements still remain unclear in spite of the high amount of knowledge on the primary mechanisms of both the diabetes and the metabolic state of ketosis. Molecular network analysis of conditions, diseases and treatments might provide new insights and help build a better understanding of clinical, metabolic and molecular relationships among physiological conditions. Accordingly, our aim is to reveal such a relationship between a ketogenic diet and type 2 diabetes through systems biology approaches. METHODS: Our systemic approach is based on the creation and analyses of the cell networks representing the metabolic state in a very-low-carbohydrate low-fat ketogenic diet. This global view might help identify unnoticed relationships often overlooked in molecule or process-centered studies. RESULTS: A strong relationship between the insulin resistance pathway and the ketosis main pathway was identified, providing a possible explanation for the improvement observed in clinical trials. Moreover, the map analyses permit the formulation of some hypothesis on functional relationships between the molecules involved in type 2 diabetes and induced ketosis, suggesting, for instance, a direct implication of glucose transporters or inflammatory processes. The molecular network analysis performed in the ketogenic-diet map, from the diabetes perspective, has provided insights on the potential mechanism of action, but also has opened new possibilities to study the applications of the ketogenic diet in other situations such as CNS or other metabolic dysfunctions.

SELECTION OF CITATIONS
SEARCH DETAIL
...