Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
3.
Nat Genet ; 50(5): 766-767, 2018 05.
Article in English | MEDLINE | ID: mdl-29549330

ABSTRACT

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.

4.
Nat Genet ; 50(1): 26-41, 2018 01.
Article in English | MEDLINE | ID: mdl-29273807

ABSTRACT

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.


Subject(s)
Body Mass Index , Energy Intake/genetics , Energy Metabolism/genetics , Genetic Variation , Obesity/genetics , Adult , Animals , Drosophila/genetics , Female , Gene Frequency , Humans , Male , Proteins/genetics , Syndrome
5.
Arterioscler Thromb Vasc Biol ; 37(10): 1956-1962, 2017 10.
Article in English | MEDLINE | ID: mdl-28860221

ABSTRACT

OBJECTIVE: Cholesterol efflux capacity (CEC) has emerged as a biomarker of coronary artery disease risk beyond plasma high-density lipoprotein (HDL) cholesterol (HDL-C) level. However, the determinants of CEC are incompletely characterized. We undertook a large-scale family-based population study to identify clinical, biochemical, and HDL particle parameter determinants of CEC, characterize reasons for the discordancy with HDL-C, quantify its heritability, and assess its stability over 10 to 12 years. APPROACHES AND RESULTS: CEC was quantified in 1988 individuals from the GRAPHIC (Genetic Regulation of Arterial Pressure of Humans in the Community) cohort, comprising individuals from 2 generations from 520 white nuclear families. Serum lipid and lipoprotein levels were determined by ultracentrifugation or nuclear magnetic resonance and HDL particle size and number quantified by nuclear magnetic resonance. Ninety unrelated individuals had repeat CEC measurements in samples collected after 10 to 12 years. CEC was positively correlated with HDL-C (R=0.62; P<0.0001). Among clinical and biochemical parameters, age, systolic blood pressure, alcohol consumption, serum albumin, triglycerides, phospholipids, and lipoprotein(a) were independently associated with CEC. Among HDL particle parameters, HDL particle number, particle size, and apolipoprotein A-II level were independently associated with CEC. Serum triglyceride level partially explained discordancy between CEC and HDL-C. CEC measurements in samples collected 10 to 12 years apart were strongly correlated (r=0.73; P<0.0001). Heritability of CEC was 0.31 (P=3.89×10-14) without adjustment for HDL-C and 0.13 (P=1.44×10-3) with adjustment. CONCLUSIONS: CEC is a stable trait over time, is influenced by specific clinical, serum, and HDL particle parameters factors beyond HDL-C, can be maintained in persons with a low plasma HDL-C by elevated serum triglyceride level, and is modestly independently heritable.


Subject(s)
Cholesterol, HDL/blood , Coronary Disease/blood , Adolescent , Adult , Biological Transport , Biomarkers/blood , Cholesterol, HDL/genetics , Female , Humans , Male , Middle Aged , Risk Factors , Triglycerides/blood , Young Adult
6.
J Am Coll Cardiol ; 69(7): 823-836, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28209224

ABSTRACT

BACKGROUND: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. OBJECTIVES: This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. METHODS: In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. RESULTS: We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10-4 with a range of other diseases/traits. CONCLUSIONS: We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.


Subject(s)
Coronary Artery Disease/genetics , Genetic Loci , Genetic Pleiotropy , Case-Control Studies , Coronary Artery Disease/epidemiology , Female , Gene Frequency , Genome-Wide Association Study , Humans , Male , Odds Ratio , Polymorphism, Single Nucleotide
7.
Nature ; 542(7640): 186-190, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28146470

ABSTRACT

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Subject(s)
Body Height/genetics , Gene Frequency/genetics , Genetic Variation/genetics , ADAMTS Proteins/genetics , Adult , Alleles , Cell Adhesion Molecules/genetics , Female , Genome, Human/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosaminoglycans/biosynthesis , Hedgehog Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon Regulatory Factors/genetics , Interleukin-11 Receptor alpha Subunit/genetics , Male , Multifactorial Inheritance/genetics , NADPH Oxidase 4 , NADPH Oxidases/genetics , Phenotype , Pregnancy-Associated Plasma Protein-A/metabolism , Procollagen N-Endopeptidase/genetics , Proteoglycans/biosynthesis , Proteolysis , Receptors, Androgen/genetics , Somatomedins/metabolism
8.
Hum Mol Genet ; 25(18): 4094-4106, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27466198

ABSTRACT

It has been hypothesized that low frequency (1-5% minor allele frequency (MAF)) and rare (<1% MAF) variants with large effect sizes may contribute to the missing heritability in complex traits. Here, we report an association analysis of lipid traits (total cholesterol, LDL-cholesterol, HDL-cholesterol triglycerides) in up to 27 312 individuals with a comprehensive set of low frequency coding variants (ExomeChip), combined with conditional analysis in the known lipid loci. No new locus reached genome-wide significance. However, we found a new lead variant in 26 known lipid association regions of which 16 were >1000-fold more significant than the previous sentinel variant and not in close LD (six had MAF <5%). Furthermore, conditional analysis revealed multiple independent signals (ranging from 1 to 5) in a third of the 98 lipid loci tested, including rare variants. Addition of our novel associations resulted in between 1.5- and 2.5-fold increase in the proportion of heritability explained for the different lipid traits. Our findings suggest that rare coding variants contribute to the genetic architecture of lipid traits.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Lipid Metabolism/genetics , Lipids/genetics , Adolescent , Adult , Aged , Child , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Exome/genetics , Gene Frequency , Genome-Wide Association Study , Humans , Lipids/blood , Middle Aged , Polymorphism, Single Nucleotide , Triglycerides/blood , Triglycerides/genetics , White People
9.
N Engl J Med ; 374(12): 1134-44, 2016 03 24.
Article in English | MEDLINE | ID: mdl-26934567

ABSTRACT

BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).


Subject(s)
Angiopoietins/genetics , Cell Adhesion Molecules/genetics , Coronary Artery Disease/genetics , Lipoprotein Lipase/genetics , Mutation , Triglycerides/blood , Aged , Angiopoietin-Like Protein 4 , Female , Genotyping Techniques , Humans , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/metabolism , Male , Middle Aged , Mutation, Missense , Risk Factors , Sequence Analysis, DNA , Triglycerides/genetics
10.
J Magn Reson Imaging ; 41(4): 1129-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24700404

ABSTRACT

PURPOSE: To determine the interstudy reproducibility of myocardial strain and peak early-diastolic strain rate (PEDSR) measurement on cardiovascular magnetic resonance imaging (MRI) assessed with feature tracking (FT) and tagging, in patients with aortic stenosis (AS). MATERIALS AND METHODS: Cardiac MRI was performed twice (1-14 days apart) in 18 patients (8 at 1.5 Tesla [T], 10 at 3T) with moderate-severe AS. Circumferential peak systolic strain (PSS) and PEDSR were measured in all patients. Longitudinal PSS and PEDSR were assessed using FT in all patients, and tagging in the 3T sub-group. RESULTS: PSS was higher with FT than tagging (21.0 ± 1.9% versus 17.0 ± 3.4% at 1.5T, 21.4 ± 4.0% versus 17.7 ± 3.0% at 3T, P < 0.05), as was PEDSR (1.3 ± 0.3 s(-1) versus 1.0 ± 0.3 s(-1) , P = 0.10 at 1.5T and 1.3 ± 0.4 s(-1) versus 0.8 ± 0.3 s(-1) , P < 0.05 at 3T). The reproducibility of PSS was excellent with FT (coefficient of variation [CoV] 9-10%) and good with tagging at 1.5T (13-19%). Reproducibility of circumferential PEDSR was best at 1.5T when only basal/mid slices were included (CoV 12%), but moderate to poor at 3T (29-35%). Reproducibility of longitudinal strain was good with FT (10-16%) but moderate for PEDSR (∼30%). CONCLUSION: In patients with AS, FT consistently produces higher values compared with tagging. The interstudy reproducibility of PSS is excellent with FT and good with tagging. The reproducibility of circumferential PEDSR at 1.5T is good when only basal and mid slices are used.


Subject(s)
Algorithms , Aortic Valve Stenosis/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Pattern Recognition, Automated/methods , Ventricular Dysfunction, Left/physiopathology , Aged , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/pathology , Diastole , Elastic Modulus , Elasticity Imaging Techniques/methods , Female , Humans , Image Enhancement/methods , Male , Observer Variation , Reproducibility of Results , Sensitivity and Specificity , Shear Strength , Stress, Mechanical , Stroke Volume , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...