Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 174: 25-37, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36336008

ABSTRACT

Aortic valve stenosis is the most common valve disease in the western world. Central to the pathogenesis of this disease is the growth of new blood vessels (angiogenesis) within the aortic valve allowing infiltration of immune cells and development of intra-valve inflammation. Identifying the cellular mediators involved in this angiogenesis is important as this may reveal new therapeutic targets which could ultimately prevent the progression of aortic valve stenosis. Aortic valves from patients undergoing surgery for aortic valve replacement or dilation of the aortic arch were examined both ex vivo and in vitro. We now demonstrate that the anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), a non-signalling soluble receptor for vascular endothelial growth factor, is constitutively expressed in non-diseased valves. sFlt-1 expression was, however, significantly reduced in aortic valve tissue from patients with aortic valve stenosis while protein markers of hypoxia were simultaneously increased. Exposure of primary-cultured valve interstitial cells to hypoxia resulted in a decrease in the expression of sFlt-1. We further reveal using a bioassay that siRNA knock-down of sFlt1 in valve interstitial cells directly results in a pro-angiogenic environment. Finally, incubation of aortic valves with sphingosine 1-phosphate, a bioactive lipid-mediator, increased sFlt-1 expression and inhibited angiogenesis within valve tissue. In conclusion, this study demonstrates that sFlt1 expression is directly correlated with angiogenesis in aortic valves and the observed decrease in sFlt-1 expression in aortic valve stenosis could increase valve inflammation, promoting disease progression. This could be a viable therapeutic target in treating this disease.


Subject(s)
Aortic Valve Stenosis , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Aortic Valve Stenosis/metabolism , Aortic Valve/pathology , Inflammation/pathology , Hypoxia/metabolism
2.
J Cell Sci ; 125(Pt 9): 2267-75, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22344262

ABSTRACT

Following myocardial infarction, angiogenesis occurs as a result of thrombus formation, which permits reperfusion of damaged myocardium. Sphingosine 1-phosphate (S1P) is a naturally occurring lipid mediator released from platelets and is found in high concentrations at sites of thrombosis. S1P might therefore be involved in regulating angiogenesis following myocardial infarction and might influence reperfusion. The aims of this study were to determine the effects of S1P in human coronary arterial cell angiogenesis and delineate the subsequent mechanisms. An in vitro model of angiogenesis was developed using a co-culture of human coronary artery endothelial cells, human coronary smooth muscle cells and human fibroblasts. In this model, S1P inhibited angiogenesis and this was dependent on the presence of smooth muscle cells. The mechanism of the inhibitory effect was through S1P-induced release of a soluble mediator from smooth muscle cells. This mediator was identified as tissue inhibitor of metalloproteinase-2 (TIMP-2). Release of TIMP-2 was dependent on S1P-induced activation of Rho kinase and directly contributed to incomplete formation of endothelial cell adherens junctions. This was observed as a diffuse localisation of VE-cadherin, leading to decreased tubulogenesis. A similar inhibitory response to S1P was demonstrated in an ex vivo human arterial model of angiogenesis. In summary, S1P-induced inhibition of angiogenesis in human artery endothelial cells is mediated by TIMP-2 from vascular smooth muscle cells. This reduces the integrity of intercellular junctions between nascent endothelial cells. S1P might therefore inhibit the angiogenic response following myocardial infarction.


Subject(s)
Coronary Vessels/drug effects , Lysophospholipids/pharmacology , Myocytes, Smooth Muscle/metabolism , Neovascularization, Physiologic/drug effects , Sphingosine/analogs & derivatives , Tissue Inhibitor of Metalloproteinase-2/metabolism , Adherens Junctions/drug effects , Cell Communication , Coculture Techniques , Coronary Vessels/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Enzyme Activation/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Models, Biological , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Neovascularization, Physiologic/physiology , Sphingosine/pharmacology , rho-Associated Kinases/metabolism
3.
Cardiovasc Res ; 90(3): 557-64, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21285289

ABSTRACT

AIMS: Growth factor-induced repression of smooth muscle (SM) cell marker genes is an integral part of vascular SM (VSM) cell proliferation. This is partly regulated via translocation of extracellular signal-regulated kinase 1/2 (ERK1/2) to the nucleus which activates the transcription factor Elk-1. The mediators involved in ERK1/2 nuclear translocation in VSM cells are unknown. The aim of this study is to examine the mechanisms which regulate growth factor-induced nuclear translocation of ERK1/2 and gene expression in VSM cells. METHODS AND RESULTS: In cultured human VSM cells, phospholipase C (PLC)γ1 expression was required for platelet-derived growth factor (PDGF)-induced ERK1/2 nuclear translocation, Elk-1 phosphorylation, and subsequent repression of SM α-actin gene expression. The mechanisms of a role for PLCγ1 in ERK1/2 nuclear localization were further examined by investigating interacting proteins. The ERK1/2-binding phosphoprotein, protein enriched in astrocytes-15 (PEA-15), was phosphorylated by PDGF and this phosphorylation required activation of PLCγ1. In cells pre-treated with PEA-15 siRNA, ERK1/2 distribution significantly increased in the nucleus and resulted in decreased SM α-actin expression and increased VSM cell proliferation. Overexpression of PEA-15 increased ERK1/2 localization in the cytoplasm. The regulatory role of PEA-15 phosphorylation was assessed. In VSM cells overexpressing a non-phosphorylatable form of PEA-15, PDGF-induced ERK1/2 nuclear localization was inhibited. CONCLUSION: These results suggest that PEA-15 phosphorylation by PLCγ1 is required for PDGF-induced ERK1/2 nuclear translocation. This represents an important level of phenotypic control by directly affecting Elk-1-dependent transcription and ultimately SM cell marker protein expression in VSM cells.


Subject(s)
Myocytes, Smooth Muscle/metabolism , Phospholipase C gamma/metabolism , Actins/metabolism , Active Transport, Cell Nucleus , Apoptosis Regulatory Proteins , Becaplermin , Cells, Cultured , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-sis , RNA, Small Interfering/genetics , Signal Transduction , Transcription, Genetic , ets-Domain Protein Elk-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL