ABSTRACT
The likelihood of being diagnosed with thyroid cancer has increased in recent years; it is the fastest-expanding cancer in the United States and it has tripled in the last three decades. In particular, Papillary Thyroid Carcinoma (PTC) is the most common type of cancer affecting the thyroid. It is a slow-growing cancer and, thus, it can usually be cured. However, given the worrying increase in the diagnosis of this type of cancer, the discovery of new genetic markers for accurate treatment and prognostic is crucial. In the present study, the aim is to identify putative genes that may be specifically relevant in PTC through bioinformatic analysis of several gene expression public datasets and clinical information. Two datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) dataset were studied. Statistics and machine learning methods were sequentially employed to retrieve a final small cluster of genes of interest: PTGFR, ZMAT3, GABRB2, and DPP6. Kaplan-Meier plots were employed to assess the expression levels regarding overall survival and relapse-free survival. Furthermore, a manual bibliographic search for each gene was carried out, and a Protein-Protein Interaction (PPI) network was built to verify existing associations among them, followed by a new enrichment analysis. The results revealed that all the genes are highly relevant in the context of thyroid cancer and, more particularly interesting, PTGFR and DPP6 have not yet been associated with the disease up to date, thus making them worthy of further investigation as to their relationship to PTC.
Subject(s)
Gene Expression Regulation, Neoplastic , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/metabolism , Neoplasm Recurrence, Local/genetics , Thyroid Neoplasms/pathology , Computational Biology , Gene ExpressionABSTRACT
Head and neck squamous cell carcinoma (HNSCC) is a remarkably heterogeneous disease with around 50% mortality, a fact that has prompted researchers to try new approaches to improve patient survival. Hemoxygenase-1 (HO-1) is the rate-limiting step for heme degradation into carbon monoxide, free iron and biliverdin. We have previously reported that HO-1 protein is upregulated in human HNSCC samples and that it is localized in the cytoplasmic and nuclear compartments; additionally, we have demonstrated that HO-1 nuclear localization is associated with malignant progression. In this work, by using pharmacological and genetic experimental approaches, we begin to elucidate the mechanisms through which HO-1 plays a role in HNSCC. We found that high HO-1 mRNA was associated with decreased patient survival in early stages of HNSCC. In vitro experiments have shown that full-length HO-1 localizes in the cytoplasm, and that, depending on its enzymatic activity, it increases cell viability and promotes cell cycle progression. Instead, HO-1 does not alter migration capacity. Furthermore, we show that C-terminal truncated HO-1 localizes into the nucleus, increases cell viability and promotes cell cycle progression. In conclusion, we herein demonstrate that HO-1 displays protumor activities in HNSCC that depend, at least in part, on the nuclear localization of HO-1.
ABSTRACT
Heme Oxygenase-1 (HO-1) is a type II detoxifying enzyme that catalyzes the rate-limiting step in heme degradation leading to the formation of equimolar quantities of carbon monoxide (CO), free iron and biliverdin. HO-1 was originally shown to localize at the smooth endoplasmic reticulum membrane (sER), although increasing evidence demonstrates that the protein translocates to other subcellular compartments including the nucleus. The nuclear translocation occurs after proteolytic cleavage by proteases including signal peptide peptidase and some cysteine proteases. In addition, nuclear translocation has been demonstrated to be involved in several cellular processes leading to cancer progression, including induction of resistance to therapy and enhanced metastatic activity. In this review, we focus on nuclear HO-1 implication in pathophysiological conditions with special emphasis on malignant processes. We provide a brief background on the current understanding of the mechanisms underlying how HO-1 leaves the sER membrane and migrates to the nucleus, the circumstances under which it does so and, maybe the most important and unknown aspect, what the function of HO-1 in the nucleus is.
ABSTRACT
Despite advances in breast cancer (BC) treatment, its mortality remains high due to intrinsic or acquired resistance to therapy. Several ongoing efforts are being made to develop novel drugs to treat this pathology with the aim to overcome resistance, prolong patient survival and improve their quality of life. We have previously shown that the non-hypercalcemic vitamin D analogues EM1 and UVB1 display antitumor effects in preclinical studies employing conventional cell lines and animal models developed from these cells. In this work, we explored the antitumor effects of EM1 and UVB1 employing BC cells derived from patient-derived xenografts (PDXs), which are a powerful preclinical tool for testing new drugs. We demonstrated that the analogues reduced the viability of HER2-positive and Triple Negative BC-PDXs. Moreover, using an in vitro model of acquired resistance to Trastuzumab-emtansine, UVB1 displayed anti-proliferative actions under 2D and 3D culture conditions. It inhibited both formation and growth of established organoids. In addition, a direct correlation between UVB1 antitumor effects and VDR expression in PDXs was found. In conclusion, all the results reinforce the potential use of these vitamin D analogues as antitumor agents to treat HER2-positive and Triple Negative BC.
Subject(s)
Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Triple Negative Breast Neoplasms/drug therapy , Vitamin D/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Quality of Life , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Vitamin D/analogs & derivatives , Xenograft Model Antitumor AssaysABSTRACT
Calcitriol analogs have shown promising potential as compounds to be used in cancer chemotherapy. This report presents the synthesis of a novel vitamin D3 derivative with an amide and a carboxyl group in its side chain, called ML-344. In addition, we report its in vitro antitumor activity and its in vivo calcemic effects. We demonstrate that the analog decreases cell viability and retards cell migration of different breast, glioblastoma and head and neck cancer cell lines. Additionally, unlike calcitriol, ML-344 does not display citotoxicity to the murine non-malignant mammary cells and human astrocytes. In concordance with the antimigratory effects found in breast cancer cells, ML-344 decreased the invasive capacity and induced a rearrangement of the actin cytoskeleton in the LM3 breast cancer cell line. In relation to the in vivo studies, the analog did not cause hypercalcemic effects in CF1 mice administered daily at 5 µg/Kg of body weight during a period of 264 h. Finally, computational studies were performed to evaluate the potential binding of the analog to the vitamin D receptor and the in silico assays showed that ML-344 is able to bind to VDR with interesting particularities and greater affinity than calcitriol. Altogether, these results suggest that ML-344 has a promising potential as an antitumor agent with a differential effect between tumor and non-malignant cells.
Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Glioblastoma/drug therapy , Head and Neck Neoplasms/drug therapy , Receptors, Calcitriol/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Astrocytes/drug effects , Calcitriol/chemical synthesis , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Humans , Male , MiceABSTRACT
Aims: Heme oxygenase-1 (HO-1) is an enzyme involved in cellular responses to oxidative stress and has also been shown to regulate processes related to cancer progression. In this regard, HO-1 has been shown to display a dual effect with either antitumor or protumor activity, which is also true for breast cancer (BC). In this work, we address this discrepancy regarding the role of HO-1 in BC. Results: HO-1 was detected in human BC tissues, and its protein levels correlated with reduced tumor size and longer overall survival time of patients, thus suggesting the clinical importance of HO-1 in this type of cancer. Contrariwise, nuclear localization of HO-1 correlated with higher tumor grade suggesting that the effect of HO-1 is dependent on its cellular localization. In vivo experiments showed that both pharmacological activation and genetic overexpression of HO-1 reduce the tumor burden in two different animal models of BC. Furthermore, the pharmacological and genetic activation of HO-1 in several BC cell lines reduce the cellular viability by inducing apoptosis and cell cycle arrest and decrease the cellular migration and invasion rates by modulating pathways involved in the epithelial-mesenchymal transition. Furthermore, HO-1 activation impaired in vivo the metastatic dissemination. Innovation and Conclusion: By using various BC cell lines and animal models as well as human tumor samples, we demonstrated that total HO-1 displays antitumor activities in BC. Furthermore, our study suggests that HO-1 subcellular localization may explain the differential effects observed for the protein in different tumor types.
Subject(s)
Breast Neoplasms/pathology , Cell Nucleus/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Up-Regulation , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Survival , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Grading , Neoplasm Transplantation , Survival Analysis , Tumor BurdenABSTRACT
Hyaluronan (HA) is the major glycosaminoglycan present in the extracellular matrix. It is produced by some tumours and promotes proliferation, differentiation and migration among others cellular processes. Gestational trophoblastic disease (GTD) is composed by non-tumour entities, such as hydatidiform mole (HM), which is the most common type of GTD and also malignant entities such as choriocarcinoma (CC) and placental site trophoblastic tumour (PSTT), being CC the most aggressive tumour. Although there is a growing understanding of GTD biology, the role of HA in the pathogenesis of this group of diseases remains largely unknown. The aim of this work was to study the role of HA in the pathogenesis of GTD by defining the expression pattern of HA and its receptors CD44 and RHAMM, as well as to determine if HA can modulate proliferation, differentiation and migration of CC cells. Receptors and signalling pathways involved were also analyzed. We demonstrated that HA and RHAMM are differently expressed among GTD entities and even among trophoblast subtypes. We also showed that HA is able to enhance the expression of extravillous trophoblast markers and also to induce migration of JEG-3 cells, the latter mediated by RHAMM as well as PI3K and MAPK pathways. These findings indicate a novel regulatory mechanism for CC cell biology and also contribute to the understanding of GTD pathophysiology.
Subject(s)
Cell Movement/drug effects , Choriocarcinoma/metabolism , Choriocarcinoma/pathology , Extracellular Matrix Proteins/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/pharmacology , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Weight , Structure-Activity Relationship , Tumor Cells, CulturedABSTRACT
Chronic myeloid leukemia is a myeloproliferative syndrome characterized by the presence of the Philadelphia chromosome (Ph), generated by a reciprocal translocation occurring between chromosomes 9 and 22 [t(9;22)(q34;q11)]. As a consequence, a fusion gene (bcr-abl) encoding a constitutively active kinase is generated. The first-line treatment consists on BCR-ABL inhibitors such as Imatinib, Nilotinib and Dasatinib. Nevertheless, such treatment may lead to the selection of resistant cells. Therefore, finding molecules that enhance the anti-proliferative effect of first-line drugs is of value. Hyaluronan oligomers (oHA) are known to be able to sensitize several tumor cells to chemotherapy. We have previously demonstrated that oHA can revert Vincristine resistance in mouse lymphoma and human leukemia cell lines. However, little is known about the role of oHA in hematological malignancies. The aim of this work was to determine whether oHA are able to modulate the anti-proliferative effect of Imatinib in chronic myeloid leukemia (CML) cell lines. The effect on apoptosis and senescence as well as the involvement of signaling pathways were also evaluated. For this purpose, the human CML cell lines K562 and Kv562 (resistant) were used. We demonstrated that oHA sensitized both cell lines to the anti-proliferative effect of Imatinib increasing apoptosis and senescence. Moreover, this effect would be accomplished through the down-regulation of the PI3K signaling pathway. These findings highlight the potential of oHA when used as a co-adjuvant therapy for chronic myeloid leukemia.
Subject(s)
Drug Resistance, Neoplasm/drug effects , Hyaluronic Acid/administration & dosage , Imatinib Mesylate/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cellular Senescence/drug effects , Cytoprotection/drug effects , Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic/drug effects , Humans , Hyaluronic Acid/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , MiceABSTRACT
Hyaluronan (HA) is one of the major components of the extracellular matrix. Several solid tumors produce high levels of HA, which promotes survival and multidrug resistance (MDR). HA oligomers (oHAs) can block HA effects. However, little is known about the role of HA in hematological malignancies. The aim of this work was to determine whether HA or its oligomers can modulate the proliferation of leukemia cells as well as their effect on MDR. Receptors and signaling pathways involved were also analyzed. For this purpose, the human leukemic cell lines K562 and Kv562, which are sensitive and resistant to Vincristine (VCR), respectively, were used. We demonstrated that HA induced cell proliferation in both cell lines. On K562 cells, this effect was mediated by cluster differentiation 44 (CD44) and activation of both phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, whereas on Kv562 cells, the effect was mediated by receptor for hyaluronan-mediated motility (RHAMM) and PI3K/Akt activation. The inhibition of HA synthesis by 4-methylumbelliferone (4MU) decreased cell line proliferation and sensitized Kv562 to the effect of VCR through P-glycoprotein (Pgp) inhibition, in both cases with senescence induction. Moreover, oHAs inhibited K562 proliferation mediated by CD44 as well as Akt and ERK down-regulation. Furthermore, oHAs sensitized Kv562 cells to VCR by Pgp inhibition inducing senescence. We postulate that the synthesis of HA would promote leukemia progression mediated by the triggering of the above-mentioned proliferative signals. These findings highlight the potential use of oHAs and 4MU as coadjuvant for drug-resistant leukemia.