Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Genet Mol Biol ; 47(1): e20230203, 2024.
Article in English | MEDLINE | ID: mdl-38530405

ABSTRACT

Integrative network analysis (INA) is important for identifying gene modules or epigenetically regulated molecular pathways in diseases. This study evaluated the effect of excessive gestational weight gain (EGWG) on INA of differentially methylated regions, maternal metabolism and offspring growth. Brazilian women from "The Araraquara Cohort Study" with adequate pre-pregnancy body mass index were divided into EGWG (n=30) versus adequate gestational weight gain (AGWG, n=45) groups. The methylome analysis was performed on maternal blood using the Illumina MethylationEPIC BeadChip. Fetal-neonatal growth was assessed by ultrasound and anthropometry, respectively. Maternal lipid and glycemic profiles were investigated. Maternal triglycerides-TG (p=0.030) and total cholesterol (p=0.014); fetus occipito-frontal diameter (p=0.005); neonate head circumference-HC (p=0.016) and thoracic perimeter (p=0.020) were greater in the EGWG compared to the AGWG group. Multiple linear regression analysis showed that maternal DNA methylation was associated with maternal TG and fasting insulin, fetal abdominal circumference, and fetal and neonate HC. The DMRs studied were enriched in 142 biological processes, 21 molecular functions,and 17 cellular components with terms directed for the fatty acids metabolism. Three DMGMs were identified:COL3A1, ITGA4 and KLRK1. INA targeted chronic diseases and maternal metabolism contributing to an epigenetic understanding of the involvement of GWG in maternal metabolism and fetal-neonatal growth.

2.
Pediatr Res ; 95(5): 1346-1355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182823

ABSTRACT

BACKGROUND: Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility. METHODS: We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants. RESULTS: A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient's tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes. CONCLUSION: We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. IMPACT: Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis. Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer. Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk. Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.

3.
Nat Rev Urol ; 21(3): 158-180, 2024 03.
Article in English | MEDLINE | ID: mdl-37848532

ABSTRACT

The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Kidney Neoplasms/therapy , Neoplasm Recurrence, Local , Wilms Tumor/therapy , Biomarkers , Biology
4.
Cancers (Basel) ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686532

ABSTRACT

Embryonic tumors share few recurrent mutations, suggesting that other mechanisms, such as aberrant DNA methylation, play a prominent role in their development. The loss of imprinting (LOI) at the chromosome region 11p15 is the germline alteration behind Beckwith-Wiedemann syndrome that results in an increased risk of developing several embryonic tumors. This study analyzed the methylome, using EPIC Beadchip arrays from 99 sporadic embryonic tumors. Among these tumors, 46.5% and 14.6% presented alterations at imprinted control regions (ICRs) 1 and 2, respectively. Based on the methylation levels of ICR1 and ICR2, four clusters formed with distinct methylation patterns, mostly for medulloblastomas (ICR1 loss of methylation (LOM)), Wilms tumors, and hepatoblastomas (ICR1 gain of methylation (GOM), with or without ICR2 LOM). To validate the results, the methylation status of 29 cases was assessed with MS-MLPA, and a high level of agreement was found between both methodologies: 93% for ICR1 and 79% for ICR2. The MS-MLPA results indicate that 15 (51.7%) had ICR1 GOM and 11 (37.9%) had ICR2 LOM. To further validate our findings, the ICR1 methylation status was characterized via digital PCR (dPCR) in cell-free DNA (cfDNA) extracted from peripheral blood. At diagnosis, we detected alterations in the methylation levels of ICR1 in 62% of the cases, with an agreement of 76% between the tumor tissue (MS-MLPA) and cfDNA methods. Among the disagreements, the dPCR was able to detect ICR1 methylation level changes presented at heterogeneous levels in the tumor tissue, which were detected only in the methylome analysis. This study highlights the prevalence of 11p15 methylation status in sporadic embryonic tumors, with differences relating to methylation levels (gain or loss), location (ICR1 or ICR2), and tumor types (medulloblastomas, Wilms tumors, and hepatoblastomas).

5.
Epigenomes ; 7(3)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37606455

ABSTRACT

BACKGROUND: Changes in body weight are associated with the regulation of DNA methylation (DNAm). In this study, we investigated the associations between maternal gestational weight gain-related DNAm and foetal and neonatal body composition. METHODS: Brazilian pregnant women from the Araraquara Cohort Study were followed up during pregnancy, delivery, and after hospital discharge. Women with normal pre-pregnancy BMI were allocated into two groups: adequate gestational weight gain (AGWG, n = 45) and excessive gestational weight gain (EGWG, n = 30). Foetal and neonatal body composition was evaluated via ultrasound and plethysmography, respectively. DNAm was assessed in maternal blood using Illumina Infinium MethylationEPIC BeadChip arrays. Linear regression models were used to explore the associations between DNAm and foetal and neonatal body composition. RESULTS: Maternal weight, GWG, neonatal weight, and fat mass were higher in the EGWG group. Analysis of DNAm identified 46 differentially methylated positions and 11 differentially methylated regions (DMRs) between the EGWG and AGWG groups. Nine human phenotypes were enriched for these 11 DMRs located in 13 genes (EMILIN1, HOXA5, CPT1B, CLDN9, ZFP57, BRCA1, POU5F1, ANKRD33, HLA-B, RANBP17, ZMYND11, DIP2C, TMEM232), highlighting the terms insulin resistance, and hyperglycaemia. Maternal DNAm was associated with foetal total thigh and arm tissues and subcutaneous thigh and arm fat, as well as with neonatal fat mass percentage and fat mass. CONCLUSION: The methylation pattern in the EGWG group indicated a risk for developing chronic diseases and involvement of maternal DNAm in foetal lean and fat mass and in neonatal fat mass.

6.
Int J Mol Sci ; 24(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37445641

ABSTRACT

Osteosarcoma (OS) is the most prevalent type of bone tumor, but slow progress has been achieved in disentangling the full set of genomic events involved in its initiation and progression. We assessed by NGS the mutational spectrum of 28 primary OSs from Brazilian patients, and identified 445 potentially deleterious SNVs/indels and 1176 copy number alterations (CNAs). TP53 was the most recurrently mutated gene, with an overall rate of ~60%, considering SNVs/indels and CNAs. The most frequent CNAs (~60%) were gains at 1q21.2q21.3, 6p21.1, and 8q13.3q24.22, and losses at 10q26 and 13q14.3q21.1. Seven cases presented CNA patterns reminiscent of complex events (chromothripsis and chromoanasynthesis). Putative RB1 and TP53 germline variants were found in five samples associated with metastasis at diagnosis along with complex genomic patterns of CNAs. PTPRQ, KNL1, ZFHX4, and DMD alterations were prevalent in metastatic or deceased patients, being potentially indicative of poor prognosis. TNFRSF11B, involved in skeletal system development and maintenance, emerged as a candidate for osteosarcomagenesis due to its biological function and a high frequency of copy number gains. A protein-protein network enrichment highlighted biological pathways involved in immunity and bone development. Our findings reinforced the high genomic OS instability and heterogeneity, and led to the identification of novel disrupted genes deserving further evaluation as biomarkers due to their association with poor outcomes.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Mutation , DNA Copy Number Variations/genetics , Genomic Instability , Osteosarcoma/genetics , Bone Neoplasms/genetics , Bone Development , Immunity , Receptor-Like Protein Tyrosine Phosphatases, Class 3
7.
Biomedicines ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37189699

ABSTRACT

Pediatric tumors share few recurrent mutations and are instead characterized by copy number alterations (CNAs). The cell-free DNA (cfDNA) is a prominent source for the detection of cancer-specific biomarkers in plasma. We profiled CNAs in the tumor tissues for further evaluation of alterations in 1q, MYCN and 17p in the circulating tumor DNA (ctDNA) in the peripheral blood at diagnosis and follow-up using digital PCR. We report that among the different kinds of tumors (neuroblastoma, Wilms tumor, Ewing sarcoma, rhabdomyosarcoma, leiomyosarcoma, osteosarcoma and benign teratoma), neuroblastoma presented the greatest amount of cfDNA, in correlation with tumor volume. Considering all tumors, cfDNA levels correlated with tumor stage, metastasis at diagnosis and metastasis developed during therapy. In the tumor tissue, at least one CNA (at CRABP2, TP53, surrogate markers for 1q and 17p, respectively, and MYCN) was observed in 89% of patients. At diagnosis, CNAs levels were concordant between tumor and ctDNA in 56% of the cases, and for the remaining 44%, 91.4% of the CNAs were present only in cfDNA and 8.6% only in the tumor. Within the cfDNA, we observed that 46% and 23% of the patients had MYCN and 1q gain, respectively. The use of specific CNAs as targets for liquid biopsy in pediatric patients with cancer can improve diagnosis and should be considered for monitoring of the disease response.

8.
Mol Genet Genomics ; 298(3): 721-733, 2023 May.
Article in English | MEDLINE | ID: mdl-37020053

ABSTRACT

DNA methylation may be involved in the development of osteosarcomas. Osteosarcomas commonly arise during the bone growth and remodeling in puberty, making it plausible to infer the involvement of epigenetic alterations in their development. As a highly studied epigenetic mechanism, we investigated DNA methylation and related genetic variants in 28 primary osteosarcomas aiming to identify deregulated driver alterations. Methylation and genomic data were obtained using the Illumina HM450K beadchips and the TruSight One sequencing panel, respectively. Aberrant DNA methylation was spread throughout the osteosarcomas genomes. We identified 3146 differentially methylated CpGs comparing osteosarcomas and bone tissue samples, with high methylation heterogeneity, global hypomethylation and focal hypermethylation at CpG islands. Differentially methylated regions (DMR) were detected in 585 loci (319 hypomethylated and 266 hypermethylated), mapped to the promoter regions of 350 genes. These DMR genes were enriched for biological processes related to skeletal system morphogenesis, proliferation, inflammatory response, and signal transduction. Both methylation and expression data were validated in independent groups of cases. Six tumor suppressor genes harbored deletions or promoter hypermethylation (DLEC1, GJB2, HIC1, MIR149, PAX6, and WNT5A), and four oncogenes presented gains or hypomethylation (ASPSCR1, NOTCH4, PRDM16, and RUNX3). Our analysis also revealed hypomethylation at 6p22, a region that contains several histone genes. Copy-number changes in DNMT3B (gain) and TET1 (loss), as well as overexpression of DNMT3B in osteosarcomas provide a possible explanation for the observed phenotype of CpG island hypermethylation. While the detected open-sea hypomethylation likely contributes to the well-known osteosarcoma genomic instability, enriched CpG island hypermethylation suggests an underlying mechanism possibly driven by overexpression of DNMT3B likely resulting in silencing of tumor suppressors and DNA repair genes.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , CpG Islands/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Mixed Function Oxygenases/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism
9.
Pediatr Blood Cancer ; 70 Suppl 2: e30130, 2023 05.
Article in English | MEDLINE | ID: mdl-36592003

ABSTRACT

The expansion of knowledge regarding driver mutations for Wilms tumor (WT) and malignant rhabdoid tumor of the kidney (MRT) and various translocations for other pediatric renal tumors opens up new possibilities for diagnosis and treatment. In addition, there are growing data surrounding prognostic factors that can be used to stratify WT treatment to improve outcomes. Here, we review the molecular landscape of WT and other pediatric renal tumors as well as WT prognostic factors. We also review incorporation of circulating tumor DNA/liquid biopsies to leverage this molecular landscape, with potential use in the future for distinguishing renal tumors at the time of diagnosis and elucidating intratumor heterogeneity, which is not well evaluated with standard biopsies. Incorporation of liquid biopsies will require longitudinal collection of multiple biospecimens. Further preclinical research, identification and validation of biomarkers, molecular studies, and data sharing among investigators are crucial to inform therapeutic strategies that improve patient outcomes.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Child , Humans , Kidney Neoplasms/pathology , Wilms Tumor/pathology , Liquid Biopsy , Biomarkers, Tumor/genetics , Biology
10.
J Dev Orig Health Dis ; 14(1): 140-145, 2023 02.
Article in English | MEDLINE | ID: mdl-36154949

ABSTRACT

The multifactorial etiology of pediatric cancer is poorly understood. Environmental factors occurring during embryogenesis can disrupt epigenetic signaling, resulting in several diseases after birth, including cancer. Associations between assisted reproductive technologies (ART), such as in vitro fertilization (IVF), and birth defects, imprinting disorders and other perinatal adverse events have been reported. IVF can result in methylation changes in the offspring, and a link with pediatric cancer has been suggested. In this study, we investigated the peripheral blood methylomes of 11 patients conceived by IVF who developed cancer in childhood. Methylation data of patients and paired sex/aged controls were obtained using the Infinium MethylationEPIC Kit (Illumina). We identified 25 differentially methylated regions (DMRs), 17 of them hypermethylated, and 8 hypomethylated in patients. The most significant DMR was a hypermethylated genomic segment located in the promoter region of LHX6, a transcription factor involved in the forebrain development and interneuron migration during embryogenesis. An additional control group was included to verify the LHX6 methylation status in children with similar cancers who were not conceived by ART. The higher LHX6 methylation levels in IVF patients compared to both control groups (healthy children and children conceived naturally who developed similar pediatric cancers), suggested that hypermethylation at the LHX6 promoter could be due to the IVF process and not secondary to the cancer itself. Further studies are required to evaluate this association and the potential role of LHX6 promoter hypermethylation for tumorigenesis.


Subject(s)
DNA Methylation , Fertilization , Child , Female , Humans , Pregnancy , Fertilization in Vitro/adverse effects , LIM-Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Promoter Regions, Genetic , Reproductive Techniques, Assisted/adverse effects , Transcription Factors/genetics
11.
Biomedicines ; 12(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275384

ABSTRACT

(1) Background: Head and neck cancer (HNC) ranks as the sixth most prevalent cancer in the world. In addition to the traditional risk factors such as alcohol and tobacco consumption, the implication of the human papillomavirus (HPV) is becoming increasingly significant, particularly in oropharyngeal cancer (OPC). (2) Methods: This study is based on a review analysis of different articles and repositories investigating the mutation profile of HPV-related OPC and its impact on patient outcomes. (3) Results: By compiling data from 38 datasets involving 8311 patients from 12 countries, we identified 330 genes that were further analyzed. These genes were enriched for regulation of the inflammatory response (RB1, JAK2, FANCA, CYLD, SYK, ABCC1, SYK, BCL6, CEBPA, SRC, BAP1, FOXP1, FGR, BCR, LRRK2, RICTOR, IGF1, and ATM), among other biological processes. Hierarchical cluster analysis showed the most relevant biological processes were linked with the regulation of mast cell cytokine production, neutrophil activation and degranulation, and leukocyte activation (FDR < 0.001; p-value < 0.05), suggesting that neutrophils may be involved in the development and progression of HPV-related OPC. (4) Conclusions: The neutrophil infiltration and HPV status emerge as a potential prognostic factor for OPC. HPV-infected HNC cells could potentially lead to a decrease in neutrophil infiltration. By gaining a better molecular understanding of HPV-mediated neutrophil immunosuppression activity, it is possible to identify a meaningful target to boost antitumor immune response in HNC and hence to improve the survival of patients with HNC.

12.
Biomedicines ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551847

ABSTRACT

Cancer is one of the leading causes of death in children and adolescents worldwide; among the types of liver cancer, hepatoblastoma (HBL) is the most common in childhood. Although it affects only two to three individuals in a million, it is mostly asymptomatic at diagnosis, so by the time it is detected it has already advanced. There are specific recommendations regarding HBL treatment, and ongoing studies to stratify the risks of HBL, understand the pathology, and predict prognostics and survival rates. Although magnetic resonance imaging spectroscopy is frequently used in diagnostics of HBL, high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy of HBL tissues is scarce. Using this technique, we studied the alterations among tissue metabolites of ex vivo samples from (a) HBL and non-cancer liver tissues (NCL), (b) HBL and adjacent non-tumor samples, and (c) two regions of the same HBL samples, one more centralized and the other at the edge of the tumor. It was possible to identify metabolites in HBL, then metabolites from the HBL center and the border samples, and link them to altered metabolisms in tumor tissues, highlighting their potential as biochemical markers. Metabolites closely related to liver metabolisms such as some phospholipids, triacylglycerides, fatty acids, glucose, and amino acids showed differences between the tissues.

13.
PLoS One ; 17(9): e0274762, 2022.
Article in English | MEDLINE | ID: mdl-36129958

ABSTRACT

Pregnancy in Sickle Cell Disease (SCD) women is associated to increased risk of clinical and obstetrical complications. Placentas from SCD pregnancies can present increased abnormal findings, which may lead to placental insufficiency, favoring adverse perinatal outcome. These placental abnormalities are well known and reported, however little is known about the molecular mechanisms, such as epigenetics. Thus, our aim was to evaluate the DNA methylation profile in placentas from women with SCD (HbSS and HbSC genotypes), compared to uncomplicated controls (HbAA). We included in this study 11 pregnant women with HbSS, 11 with HbSC and 21 with HbAA genotypes. Illumina Methylation EPIC BeadChip was used to assess the whole placental DNA methylation. Pyrosequencing was used for array data validation and qRT-PCR was applied for gene expression analysis. Our results showed high frequency of hypermethylated CpGs sites in HbSS and HbSC groups with 73.5% and 76.2% respectively, when compared with the control group. Differentially methylated regions (DMRs) also showed an increased hypermethylation status for the HbSS (89%) and HbSC (86%) groups, when compared with the control group methylation data. DMRs were selected for methylation validation (4 DMRs-HbSS and 3 DMRs the HbSC groups) and after analyses three were validated in the HbSS group, and none in the HbSC group. The gene expression analysis showed differential expression for the PTGFR (-2.97-fold) and GPR56 (3.0-fold) genes in the HbSS group, and for the SPOCK1 (-2.40-fold) and ADCY4 (1.80-fold) genes in the HbSC group. Taken together, these data strongly suggest that SCD (HbSS and HbSC genotypes) can alter placental DNA methylation and lead to gene expression changes. These changes possibly contribute to abnormal placental development and could impact in the clinical course, especially for the fetus, possibly leading to increased risk of abortion, fetal growth restriction (FGR), stillbirth, small for gestational age newborns and prematurity.


Subject(s)
Anemia, Sickle Cell , Hemoglobin SC Disease , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Epigenesis, Genetic , Female , Hemoglobin SC Disease/genetics , Hemoglobin, Sickle/genetics , Humans , Infant, Newborn , Placenta/metabolism , Pregnancy , Proteoglycans/metabolism
14.
J Dev Orig Health Dis ; 13(5): 556-565, 2022 10.
Article in English | MEDLINE | ID: mdl-35256034

ABSTRACT

The crosstalk between maternal stress exposure and fetal development may be mediated by epigenetic mechanisms, including DNA methylation (DNAm). To address this matter, we collect 32 cord blood samples from low-income Brazilian pregnant adolescents participants of a pilot randomized clinical intervention study (ClinicalTrials.gov, Identifier: NCT02807818). We hypothesized that the association between the intervention and infant neurodevelopmental outcomes at 12 months of age would be mediated by DNAm. First, we searched genome methylation differences between cases and controls using different approaches, as well as differences in age acceleration (AA), represented by the difference of methylation age and birth age. According to an adjusted p-value ≤ 0.05 we identified 3090 differentially methylated positions- CpG sites (DMPs), 21 differentially methylated regions (DMRs) and one comethylated module weakly preserved between groups. The intervention group presented a smaller AA compared to the control group (p = 0.025). A logistic regression controlled by sex and with gestational age indicated a coefficient of -0.35 towards intervention group (p = 0.016) considering AA. A higher cognitive domain score from Bayley III scale was observed in the intervention group at 12 months of age. Then, we performed a potential causal mediation analysis selecting only DMPs highly associated with the cognitive domain (adj. R2 > 0.4), DMRs and CpGs of hub genes from the weakly preserved comethylated module and epigenetic clock as raw values. DMPs in STXBP6, and PF4 DMR, mediated the association between the maternal intervention and the cognitive domain at 12 months of age. In conclusion, DNAm in different sites and regions mediated the association between intervention and cognitive outcome.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Adolescent , Cognition , Epigenomics , Female , Fetal Blood/metabolism , Humans , Maternal Exposure , Pregnancy
15.
Diagnostics (Basel) ; 12(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054324

ABSTRACT

Pediatric cancer NMR-metabonomics might be a powerful tool to discover modified biochemical pathways in tumor development, improve cancer diagnosis, and, consequently, treatment. Wilms tumor (WT) is the most common kidney tumor in young children whose genetic and epigenetic abnormalities lead to cell metabolism alterations, but, so far, investigation of metabolic pathways in WT is scarce. We aimed to explore the high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) metabonomics of WT and normal kidney (NK) samples. For this study, 14 WT and 7 NK tissue samples were obtained from the same patients and analyzed. One-dimensional and two-dimensional HR-MAS NMR spectra were processed, and the one-dimensional NMR data were analyzed using chemometrics. Chemometrics enabled us to elucidate the most significant differences between the tumor and normal tissues and to discover intrinsic metabolite alterations in WT. The metabolic differences in WT tissues were revealed by a validated PLS-DA applied on HR-MAS T2-edited 1H-NMR and were assigned to 16 metabolites, such as lipids, glucose, and branched-chain amino acids (BCAAs), among others. The WT compared to NK samples showed 13 metabolites with increased concentrations and 3 metabolites with decreased concentrations. The relative BCAA concentrations were decreased in the WT while lipids, lactate, and glutamine/glutamate showed increased levels. Sixteen tissue metabolites distinguish the analyzed WT samples and point to altered glycolysis, glutaminolysis, TCA cycle, and lipid and BCAA metabolism in WT. Significant variation in the concentrations of metabolites, such as glutamine/glutamate, lipids, lactate, and BCAAs, was observed in WT and opened up a perspective for their further study and clinical validation.

16.
Clin Exp Metastasis ; 39(3): 407-416, 2022 06.
Article in English | MEDLINE | ID: mdl-35084607

ABSTRACT

Infection with HPV virus and exposure to extrinsic carcinogens are the main causative factors for oropharyngeal squamous cell carcinoma (OPSCC). While HPV-related OPSCC typically shows a better prognosis and may be a candidate for de-intensification therapy, there is a subset of HPV-related cancers that show aggressive phenotype with frequent metastatic spread. The identification and refinement of molecular markers can better serve for prediction of prognosis and thus improve treatment decisions and outcome. We conducted a systematic review according to the PRISMA guidelines of all relevant studies addressing novel biomarkers in publications prior to July 2021. We identified studies that evaluated the association between molecular markers and prognosis in HPV-positive OPSCC. Full-text publications were entirely reviewed, classified, and selected if a clear predictive/prognostic value was seen in patients with HPV-positive OPSCC. Furthermore, a functional analysis of the target genes was conducted to understand biological processes and molecular pathways impacting on HPV-positive OPSCC outcomes. The systematic review yielded a total of 14 studies that matched the inclusion and exclusion criteria. Differential expression was identified for 31 different biomarkers. The first common pattern identified was the association of HPV-related circulating antibodies to activated immune function. Second, gene-gene interaction analysis further identified interacting gene networks tightly implicated in hypoxia tumor metabolism including the Warburg effect. Survival in HPV-positive OPSCC can be predicted by distinct selective biomarkers mainly indicative of immune host response and oxidative metabolism. Among these markers, some were identified to be unsuitable for HPV-positive de-escalation trials aimed at improving patients' quality of life.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Oropharyngeal Neoplasms , Papillomavirus Infections , Carcinoma, Squamous Cell/pathology , Humans , Oropharyngeal Neoplasms/genetics , Oropharyngeal Neoplasms/pathology , Oropharyngeal Neoplasms/therapy , Papillomaviridae/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Prognosis , Quality of Life , Squamous Cell Carcinoma of Head and Neck
17.
Nat Rev Dis Primers ; 7(1): 75, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650095

ABSTRACT

Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Child , Humans , Kidney Neoplasms/diagnosis , Kidney Neoplasms/epidemiology , Kidney Neoplasms/therapy , Prognosis , Wilms Tumor/diagnosis , Wilms Tumor/epidemiology , Wilms Tumor/therapy
18.
BMC Genom Data ; 22(1): 45, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34717534

ABSTRACT

BACKGROUND: Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. RESULTS: There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. CONCLUSIONS: DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD.


Subject(s)
Brain/metabolism , DNA Methylation , Obsessive-Compulsive Disorder/genetics , Aged , Caudate Nucleus , CpG Islands/genetics , Female , Gyrus Cinguli , Humans , Immune System/metabolism , Immunity/genetics , Male , Neuronal Plasticity/genetics , Nucleus Accumbens , Prefrontal Cortex , Putamen
19.
Sci Rep ; 11(1): 10012, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976322

ABSTRACT

In addition to chronic infection with human papilloma virus (HPV) and exposure to environmental carcinogens, genetic and epigenetic factors act as major risk factors for head and neck cancer (HNC) development and progression. Here, we conducted a systematic review in order to assess whether DNA hypermethylated genes are predictive of high risk of developing HNC and/or impact on survival and outcomes in non-HPV/non-tobacco/non-alcohol associated HNC. We identified 85 studies covering 32,187 subjects where the relationship between DNA methylation, risk factors and survival outcomes were addressed. Changes in DNA hypermethylation were identified for 120 genes. Interactome analysis revealed enrichment in complex regulatory pathways that coordinate cell cycle progression (CCNA1, SFN, ATM, GADD45A, CDK2NA, TP53, RB1 and RASSF1). However, not all these genes showed significant statistical association with alcohol consumption, tobacco and/or HPV infection in the multivariate analysis. Genes with the most robust HNC risk association included TIMP3, DCC, DAPK, CDH1, CCNA1, MGMT, P16, MINT31, CD44, RARß. From these candidates, we further validated CD44 at translational level in an independent cohort of 100 patients with tongue cancer followed-up beyond 10 years. CD44 expression was associated with high-risk of tumor recurrence and metastasis (P = 0.01) in HPV-cases. In summary, genes regulated by methylation play a modulatory function in HNC susceptibility and it represent a critical therapeutic target to manage patients with advanced disease.


Subject(s)
Carcinoma, Squamous Cell/genetics , DNA Methylation , Head and Neck Neoplasms/genetics , Genetic Predisposition to Disease , Humans , Molecular Targeted Therapy
20.
J Mol Med (Berl) ; 99(8): 1043-1055, 2021 08.
Article in English | MEDLINE | ID: mdl-33950291

ABSTRACT

Non-coding RNAs are involved with maintenance and regulation of physiological mechanisms and are involved in pathological processes, such as cancer. Among the small ncRNAs, miRNAs are the most explored in tumorigenesis, metastasis development, and resistance to chemotherapy. These small molecules of ~ 22 nucleotides are modulated during early renal development, involved in the regulation of gene expression and Wilms' tumor progression. Wilms' tumors are embryonic tumors with few mutations and complex epigenetic dysregulation. In recent years, the small ncRNAs have been explored as potentially related both in physiological development and in the tumorigenesis of several types of cancer. Besides, genes regulated by miRNAs are related to biological pathways as PI3K, Wnt, TGF-ß, and Hippo signaling pathways, among others, which may be involved with the underlying mechanisms of resistance to chemotherapy, and in this way, it has emerged as potential targets for cancer therapies, including for Wilms' tumors.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , RNA, Untranslated/genetics , Wilms Tumor/etiology , Disease Susceptibility , Drug Resistance, Neoplasm , Genetic Predisposition to Disease , Humans , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Signal Transduction , Wilms Tumor/diagnosis , Wilms Tumor/metabolism , Wilms Tumor/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...